

Milling Analysis Tools Pre-Conference Workshop October 5, 2019

10th Annual Southeast Asia Region Conference & Expo Intercontinental Jakarta Pondok Indah Hotel Jakarta, Indonesia

Workshop Presenter

Jeff Gwirtz Ph.D.

JAG Services, Inc.

"Training, Service, Process Management Programs, Consulting"

+1 798-341-2371 jeff@jagsi.com

IAOM Staff Introduction

Melinda Farris Christine McLeod

Tom Sargent

Annette Peterson

Agenda-Part I

Time	Topic/Activity
09:00- 09:15	Introduction and Agenda Review
09:15-10:00	Step Chart Development and Analysis
10:00-10:15	Morning Break
10:15-11:15	Weigh-Off Data Collection and Analysis
11:15-12:30	Granulation Curve Development and Analysis

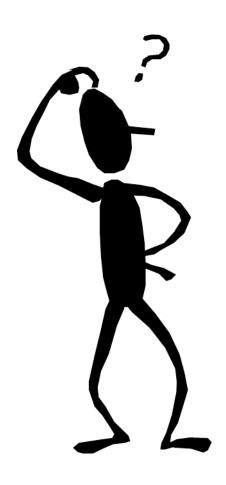
Agenda-Part II

12:30-13:30	Lunch Break
13:30-14:15	Milling Loss Calculations
14:15—15:45	Laboratory Milling
15:45-15:00	Wrap-up Workshop Concludes

After today you should be able to

- Develop and utilize step chart information
- Evaluate weigh-off data to aid in analysis and problem identification
- Properly develop and analyze granulation curves

After today you should be able to


- Consider milling loss calculations and need for process data to control loss
- Understand potential value of laboratory milling in wheat evaluation

Informal

- Ask questions
- Share Experiences
- Contact me any time

Courtesy Request

Please put your phones on beep and limit conversation till you are outside the meeting room

Serving You!!!

International Association of Operative Millers 12351 W. 96th Terrace, Suite 100 Lenexa, Kansas 66215 USA

 Phone:
 913–338–3377

 FAX:
 913–338–3553

 E-mail:
 info@iaom.info

 Web:
 www.iaom.info/

Step Chart Development and Analysis

Pre-Conference Workshop October 5, 2019

10th Annual Southeast Asia Region Conference & Expo Intercontinental Jakarta Pondok Indah Hotel Jakarta, Indonesia

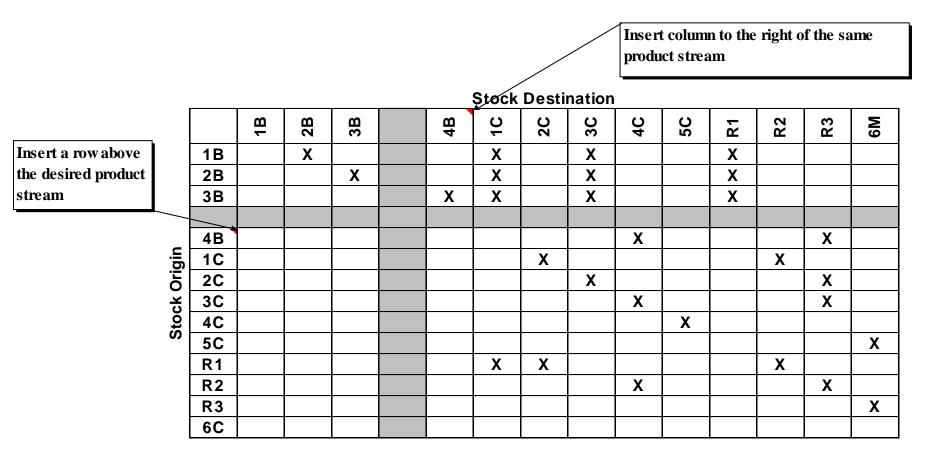
Step Chart Development

A step chart as a method of tabulating the flow rate, percentage of total stock, and the quality of stock going TO (destination) and FROM (origin) each operation in a mill flow for the purpose of analyzing load and quality balance throughout the entire mill.

Step Chart Purpose

Properly developed the step chart provides the sequence to be followed for a weigh-off and sampling to ensure product flow rates and qualities are measured without having been disturbed or put out of balance by previous disruptions of material flow or machine performance.

Use of Step Chart Information


- Estimate loads in the mill
- Evaluate equipment utilization
- Identifying material handling requirements

Starting Point

						Sto	ock De	stinat	ion					
		1B	2B	3B	4B	1C	2C	3C	4C	5C	R1	R2	R3	6C
	1B		X			X		X			X			
	2B			X		X		X			X			
	3B				X	X		X			X			
	4B								X				X	
<u>i</u>	1C						X					X		
Stock Origin	2C							X					X	
Õ	3C								X				X	
och	4C									Х				
St	5C													X
	R1					X	X					X		
	R2								X				X	
	R3													X
	6C													

Move Rows and Columns

Delete Blank Rows and Columns

After the move is completed the newly created blank rows and columns are deleted and the process of identifying additional moves to ensure all destinations stocks are shown below origin stocks as required in the definition.

Stock Destination

	1B	2B	3B	R1	1C	2C	4B	3C	R2	4C	5C	R3	60
1B		Х		Х	X			X					
2B			Х	Х	X			X					
3B				Х	Χ		X	X					
R1					Х	X			X				
1C						Х			X				
2C					-			Х				Χ	
4B										Х		X	
3C										Х		X	
R2										Χ		X	
4C											Χ		
5C													X
R3													X
6C													

Stock Origin

1B 2B 3B 10 **4B** 2C 3C R2 4 0 50 **R**3 Ő 2 Χ Х Х Х **1B** Х Χ Χ Х **2B** Χ Χ Χ 3B Χ **R1** Χ Χ Χ 1**C** Χ Χ Stock Origin **4B** Χ Χ 2C Χ Х 3C Х Х **R2** Х Χ **4C** Х 5C Χ **R3** Χ 6C

Stock Destination

Ring-around

- Sometimes it is impossible to establish a diagonal, stair stepped line
- A ring-around occurs when product from a system finds its way back into the same system directly or through another system.
- A ring-around is best avoided but may be needed in order to maintain equipment functionality

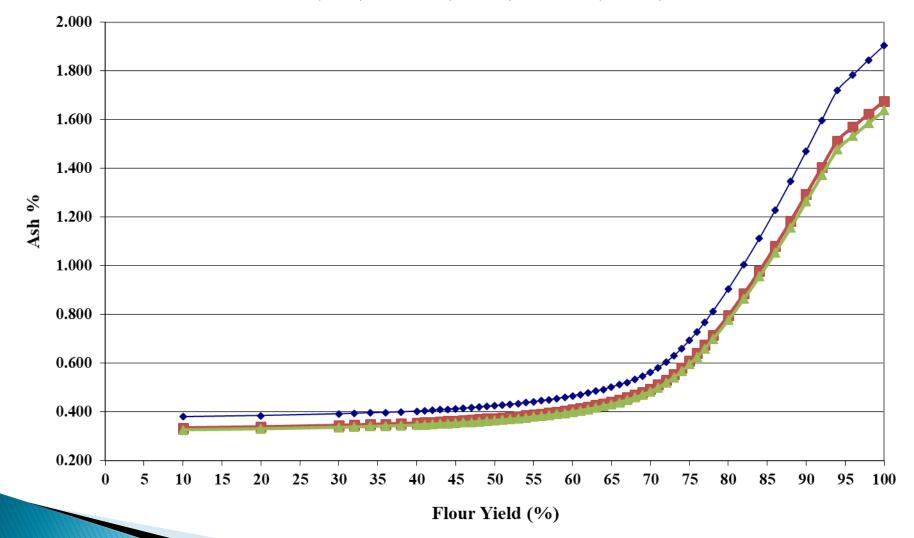
- Additional columns for flour grades and byproducts may be added
- The sum of each process column should be equal to the sum of the corresponding process row.
- The mass flow in and out of a system should be reasonably close perhaps 5% or less difference.

B1/B2 DB1/B2	$\frac{B1/B2}{\times DB1/B2}$	X P1	× × ×			R P3	P4	P7	R1M	R1F	5	X B3C	× B3F	DB3	C1A	P6	C1B	P5	C2	R2A	R2B	Ü	B4C	BR1	VIBRO1	R3	B4F	DB4	5BC		BR2	Ъ	BR3	VIBRO 2 VIBRO 3		5BF	5	Br4	5	C6	R4	C7	9	F-1	××F-2)	X X F-3	F-4	Germ	Coarse Bran	Fine Bran		r ollara	From
P1 P2			Ľ	Х	Х	~			v				Х							~																										Í	yr.						_	
DD1			_	-	Х	_	Х		Х				Х		_		Х			Х								_				_	_	_	_										v					_	-	_	_	
DD1			_			_	^	х							Х		^									х						-	_	-		_	-								X X						-	_	_	
R1Ć								X		х					~											X																		х									-	
P3			-	-					Х	Х										Х						Х				-		-	-	-	-		-														-		-	
P4										X X					Х					Х						Х																												
P7										Х										Х					3	х, х	(Х													
R1M											X X				Х						Х																							х,х										
R1F											Х				Х						Х									_					_									X,X									_	
C1															Х		Х													_		_	_	_			_						_	х,х								_		
B3Ć B3F			_	_										X X									X X			X X	X			_					_								_		X X		X X		_	_	_	_		
DB3			_	-				_						X		х		Х	v				x	-		x	X					_	_	_	_										×	v	х Х,Х				-	_		
C1A								_							_	^	х	^	^					-								-	_	-										х		^,	^,^		_		-			
P6								-									Ŷ		Х					-		Х						-	-				-	-	-		Х			^										
Ċ1B			-	-		_			_				-			_			X	_	Х		-	-	_			-		-		-	-	-	-	-	-			_	-				х					-	-	-		-
P5				-																Х						Х				-		-	-	-							Х										-			
C2																						х				X X																			X,X								_	_
R2A																						X X				Х																		Х										
R2B																										Х											Х								Х									
C3																										Х										X	-VA	4							Х									
B4C				_																				Х						_		_	_		_								_								_			
BR 1				_																					Х	_			Х	_					_								_								_	_		
VIBRO 1 R3			_	_				_																			X-S X	•		_		_	_	_	_		_		х		хх						~	Х	× 1	/ X-\	,	_		
B4F			_					_																			^	х		-	Х		_	_	_				^		X		_				X X	х	X-1	/ ٨-١	-			
DB4				-				_																				^		X-	^ VA	-	-	-		Χ, Σ	x-v	Δ			^						x X	^			-			
5BĆ				-				_																-						~	10		Х			7,7		~	-								^							
BR 2				-																										-				х		Х	-																	
DF				-																										-		-		X		Х															-			
BR 3																																		X	(Х			Х				
VIBRO 2 VIBRO 3																																			Х	(-S (-S												Х						
VIBRO 3																																			Х	(-S												Х						
5BF																																						Х										Х,Х						
C4				_																										_		_	_		_				Х		Х				X,X									
BR4 C5																																	_							XS		x			x					_	Х	(_	
C5 C6			_	-				_																						-		_	+	_	_	_	_		-	Х					^			~		-	~	V X-	<u></u>	
C6 R4		+		-				_																									+	_	_	_						X X	+					X X	X-1	/ X-\	/ -\ / X	V X-	V	
Ċ7			_	-																										-			-	-	-		-					<u> </u>	x					x	A-1		X-1	V Х-	v	
C8				-																										-		-	+		-	-	-					Ľ	-					x		-	~)		
То				-		-		-	-	-						_		-	_	_		-			-						-					-	-	-			-									-	-	-	+	-

Weigh-Off Data and Analysis

Pre-Conference Workshop October 5, 2019

10th Annual Southeast Asia Region Conference & Expo Intercontinental Jakarta Pondok Indah Hotel Jakarta, Indonesia


Cumulative Ash Curve

- Graph showing how flour ash increases when starting from the lowest ash individual flour in a mill and progressively adding the rest of the individual flours to previous mix in order of their ascending ash contents.
- Used for evaluating mill performance and those varietal differences of grains that effect milling.

Mohs Ash Chart

→ Ash (% DB) → Ash (12% MB) → Ash (14% MB)

Flour Collection Layout

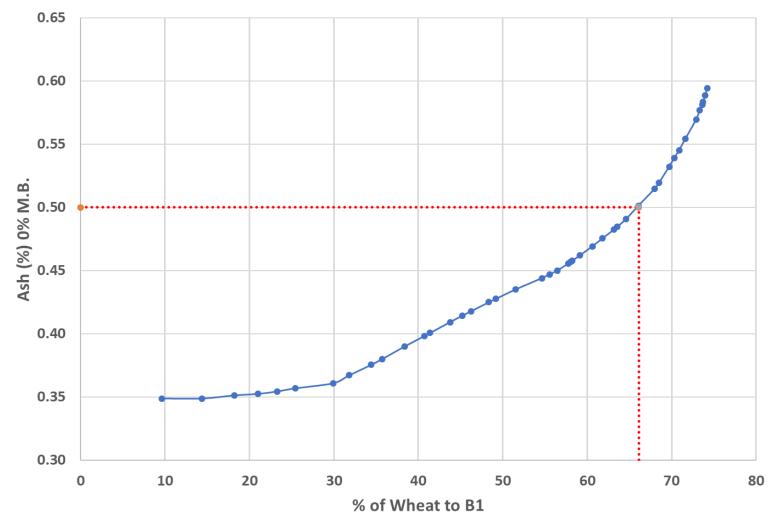
Mill-A HRW	Stream spouted to flour screw co	nveyor	
S.C. F4		F4 1 <mark>2 3 4</mark>	5 <mark>1</mark> 2 <mark>3 4 5 6</mark> 7 8 9 10 11 <mark>12</mark>
F3 1 2 3 4	5 6 7 8 9 10 1 2 3 4 5 6 7 8	1 <mark>2</mark> 3 <mark>4 5</mark> 6 7 8 9 <mark>10</mark> 11 <mark>12</mark> 1 2 3 4 5 <mark>6</mark> 7 8 9 1	0 1 2 3 4 5 6 7 <mark>8 9 10 11</mark> 12
F1 1 2 3 4	5 6 7 <mark>8</mark> 9 <mark>10</mark> 1 2 <mark>3 4</mark> 5 6 7 <mark>8</mark>	<mark>1</mark> 2 3 4 5 6 <mark>7 8</mark> 9 10 11 12 <mark>1</mark> 2 3 <mark>4 5</mark> 6 7 8 9 1	0 1 2 3 4 5 6 7 8 9 10 11 12
F2 1 2 3 4	<mark>5 6 7</mark> 8 <mark>9</mark> 10 1 2 3 4 <mark>5</mark> 6 <mark>7</mark> 8	1 2 <mark>3</mark> 4 5 6 7 8 9 10 <mark>11</mark> 12 1 2 3 4 5 6 7 8 9 <mark>1</mark>	0 1 <mark>2</mark> 3 4 5 6 <mark>7</mark> 8 9 10 11 12
No. 1 2 3 4	5 6 7 8 9 10 11 12 13 14 15 16 17 1		
Name B3A B1B2A B1B2B B3B	208182 8182C 108182 1816 1816 1816 1816 28164 1816 1816 1816 1816 1816 1816 101	1 1	2014 285f 1024 1128 1128 1128 128 4 208 4 202 203 4 203 203 4 203 203 4 203 4 203 4 203 4 203 5 203 4 203 5 203 203 203 203 203 203 203 203 203 203
Grade 3 2 3 2	2 2 2 1 2 1 1 1 2 2 1	1 3 2 3 3 1 1 3 2 3 1 1 1 3 4 4 4	2 4 2 4 4 4 4 2 3 3 3 3 4

Collecting the Data

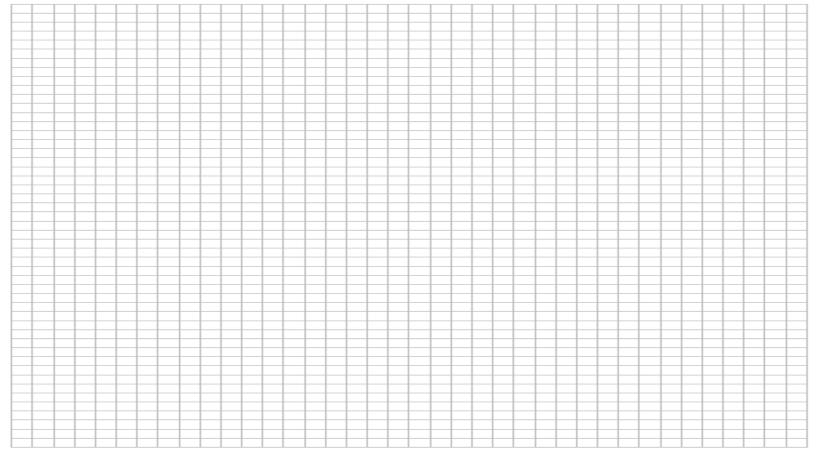
- Mill must be operating in a steady state
- Uniformly conditioned homogeneous wheat
- Confirm minimal automated control changes
- Sample downstream and move upstream
- Flour stream collection independent
- Practice and repeat weigh-off procedure
- Sample at least 15 seconds or longer
- Converted weight to a uniform time period for example Kg/min or Kg/hr.

Example of Weigh-Off Data

Charles and	ASH		System A	verage	Deviatio Averag	
Stream	(0% M.B.)	Kg/hr	ASH (0% M.B.)	Kg/hr	ASH (0% M.B.)	Kg/hr
B1B2A	0.641	146			-5	3
B1B2B	0.747	137	0.676	142	11	-3
B1B2C	0.639	142			-5	0
C1A	0.359	450	0.441	440	-19	2
C1B	0.524	430	0.441	440	19	-2
C2A	0.560	374	0.571	352	-2	6
C2B	0.582	330	0.571	332	2	-6
R1FA	0.386	712	0.369	1115	5	-36
R1FB	0.351	1518	0.309		-5	36
R1MA	0.376	359	0.364	556	3	-35
R1MB	0.353	753	0.304	550	-3	35
B3A	0.803	192	0.809	203	-1	-5
B3B	0.814	214	0.003	205	1	5
R2A	A 0.464		0.532	337	-13	-11
R2B	R2B 0.600		0.332	557	13	11

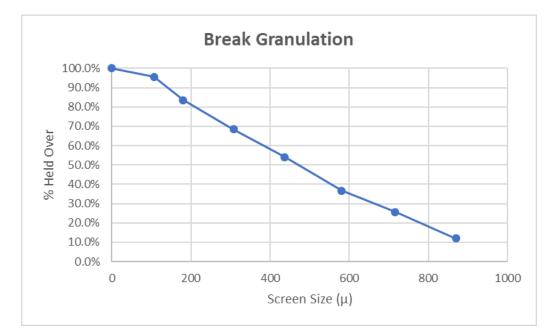


Cumulative Ash Calculation Example


Stream	Q	ΣQ	Α	Q*A	ΣQ*Α	ΣQ*A/ ΣQ
C2	18.43	18.43	0.376	6.922	6.922	0.376
C1	38.77	57.2	0.406	15.733	22.655	0.396
C3	8.19	65.39	0.441	3.609	26.265	0.402
R 1	7.18	72.57	0.441	3.164	29.429	0.406
R2	1.1	73.67	0.501	0.551	29.980	0.407
C4	5.03	78.7	0.508	2.556	32.536	0.413
4B	3.69	82.38	0.566	2.090	34.626	0.420
3B	2.54	84.92	0.603	1.533	36.159	0.426
2B	4.07	88.99	0.669	2.721	38.880	0.437
C5	4.36	93.35	0.722	3.148	42.028	0.450
R3	1.68	95.02	0.740	1.242	43.271	0.455
B5	1.1	96.12	0.773	0.851	44.121	0.459
1B	3.88	100	0.812	3.149	47.270	0.473
Total	100					

Cumulative Ash Graph Example

print-graph-paper.com


Granulation Curve Development and Analysis

Pre-Conference Workshop October 5, 2019

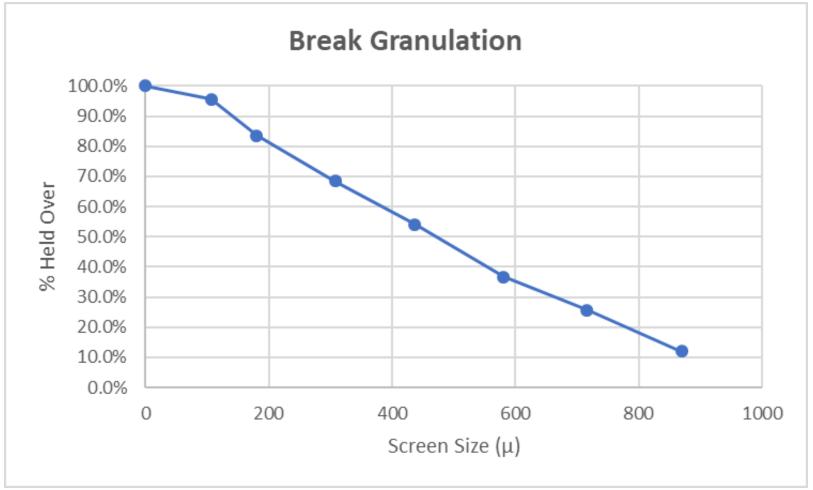
10th Annual Southeast Asia Region Conference & Expo Intercontinental Jakarta Pondok Indah Hotel Jakarta, Indonesia

 A granulation curve or profile curve is a graphic representation of the measured percentage of material cumulative held over a given size screen opening.

Category and factors influencing granulation profile

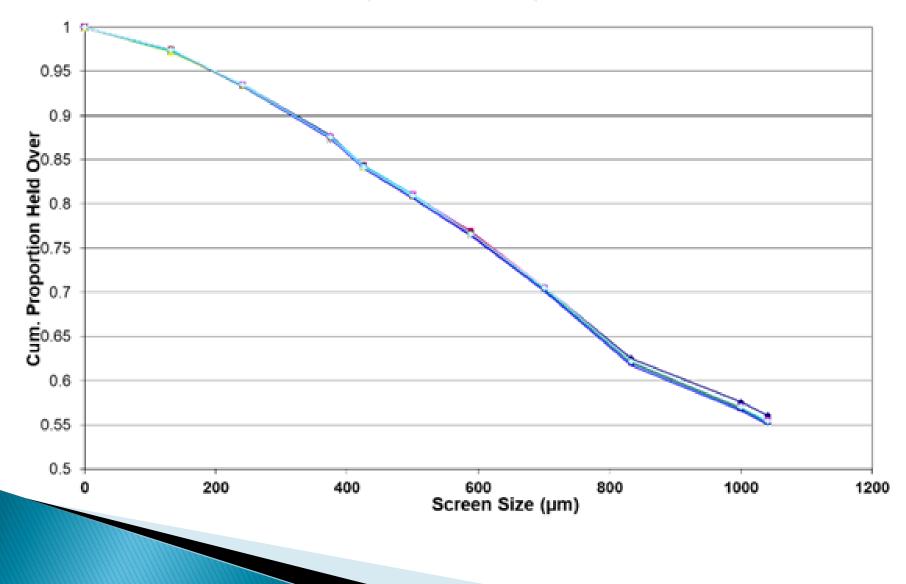
<u>Category</u>	<u>Factors</u>
Mother Nature	Temperature, Relative Humidity
Mankind	Improper Water Setting during Tempering, Improper Roll Corrugation, Selection/Installation
Material	Kennel Size, Kernel Hardness, Wheat Variety
Measurement	Scale Weights, Screen Identification, Sifting Time
Machines	Roll Wear, Belt Slip, Roll Setting
Method	Sampling Collection, Screen Selection, Calculation

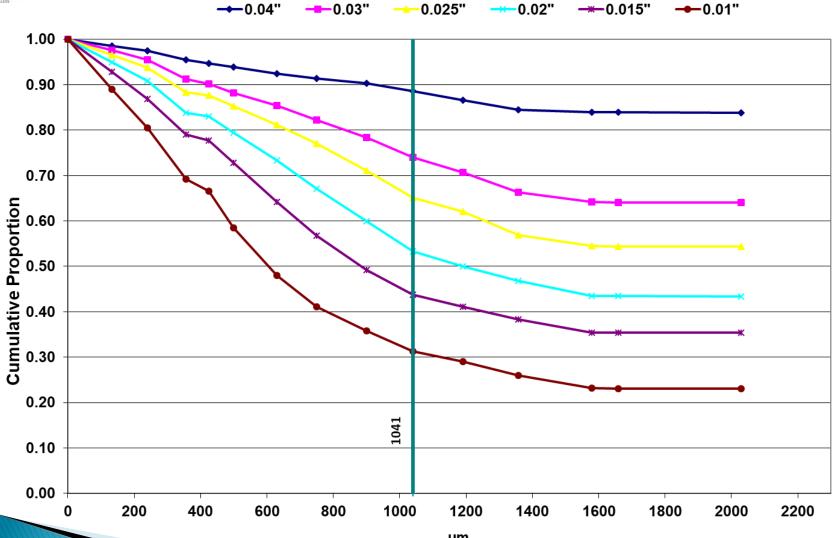
Use of Granulation Curve


- Estimate expected loads
- Evaluate roll wear
- Evaluate sifter efficiency
- Estimate loading changes

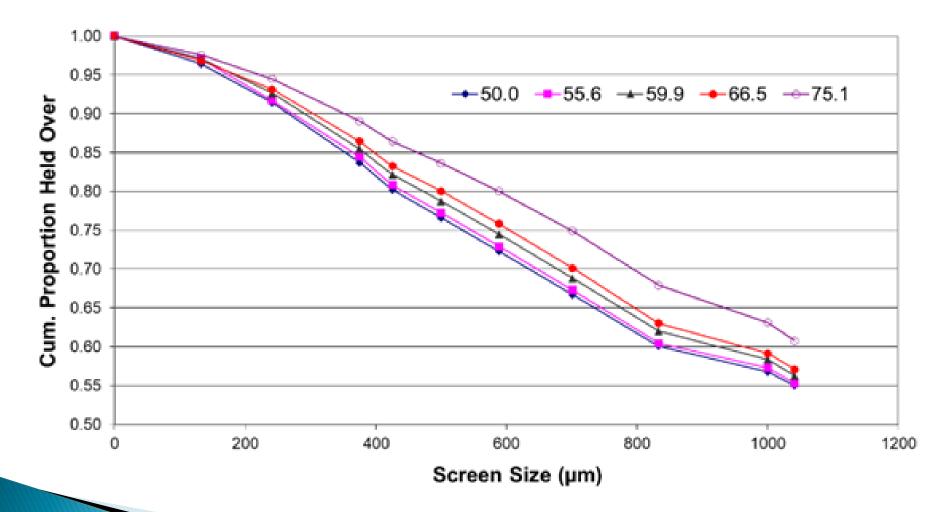
Granulation Curve Calculations

Screen	Microns	Grams	%	Σ%					
24 SS	869	59	12.0%	12.0%					
28 SS	716	67	13.6%	25.7%					
34 SS	581	54	10.9%	36.6%					
46 SS	437	86	17.5%	54.1%					
62 SS	308	71	14.4%	68.5%					
94 SS	180	74	15.1%	83.6%					
165 SS	107	59	12.0%	95.6%					
Pan	0	22	4.4%	100.0%					
490 100.0%									
nitial sample was 500 grams, therefore recovery is 98%									

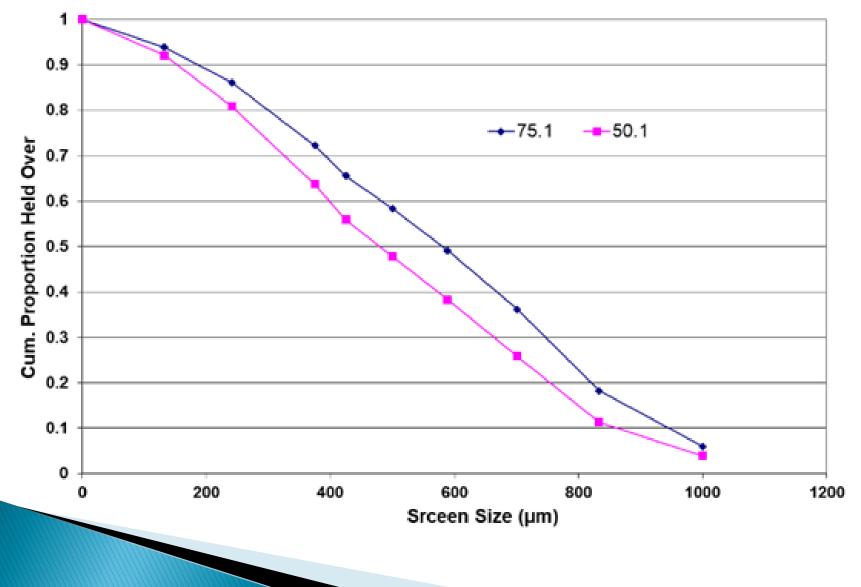



First Break Granulation Curves

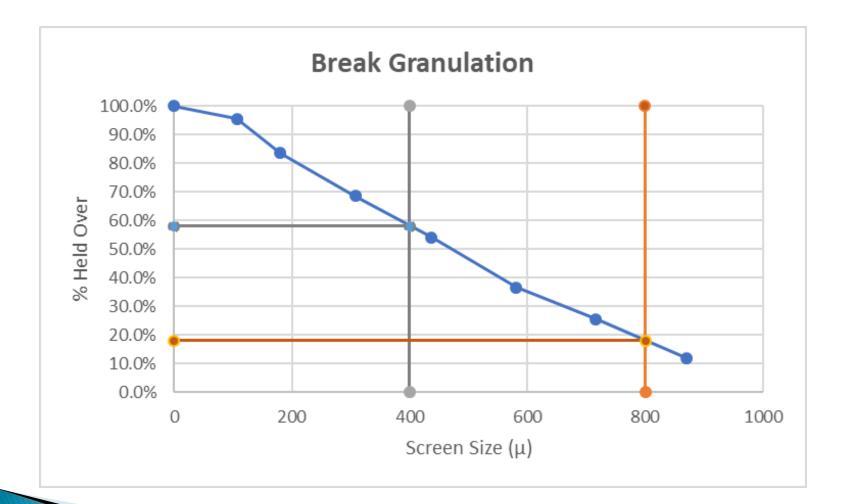
(Ten Replications)


First Break Granulation Influenced by Roll Gap Setting

μm



Influence of Average Kernel Hardness on First Break Granulation



Influence of Average Kernel Hardness on Sizings Granulation

- Pick your origin or reference
- Determine slope
- Calculate change to alternative screen
- Follow the line

Milling Loss Calculations

Pre-Conference Workshop October 5, 2019

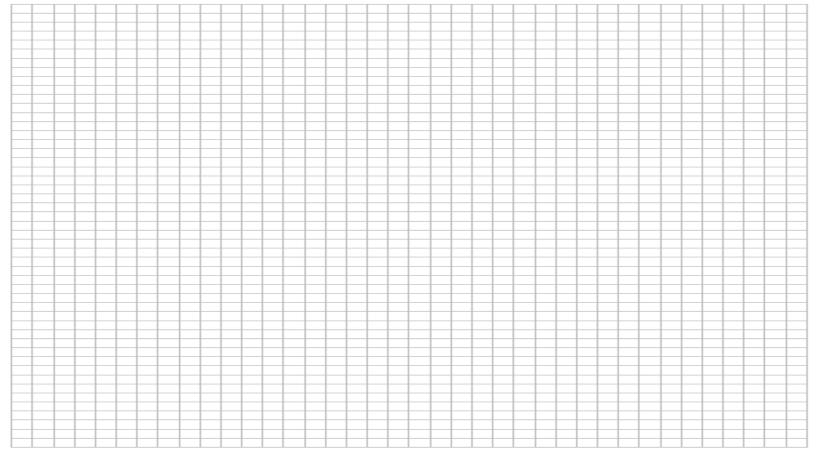
10th Annual Southeast Asia Region Conference & Expo Intercontinental Jakarta Pondok Indah Hotel Jakarta, Indonesia

Measure	Consider Using to Separate Moisture Gain/Loss From Dry Matter Gain/Loss	Separate Moisture Gain/Loss From Dry	Separate Moisture Gain/Loss From Dry Matter Gain/Loss	Scales/Count	Scales/Count	Scales/Count Raw Wheat Inventory		Cleaning Operations	Tempering Operations	Milling Operations	Four Packaging	Feed Packaging	Warehouse
		Invoice-Load Out	Invoice Vs.										
Moisture	Dry Matter	Unloading	Unloading Variance	Inventory									
Moisture	Dry Matter	Raw Wheat		Variance		Cleaning							
Moisture	Dry Matter	Screening			Cleaning Losses	and Tempering							
Moisture	Dry Matter	Clean Dry Wheat		-		System Material							
Moisture	Dry Matter	Tempered Wheat				Balance	Milling Yield						
Moisture	Dry Matter	Feed					Balance and Losses		Feed				
Moisture	Dry Matter	Flour						Flour Transfer	Transfer Loss/Gain				
Moisture Check Weights	Dry Matter	Packaging						Loss/Gain & Overpack	& Overpack	Order-Billing			
CHECK WEIGHTS		Warehousing								Damage Tras			
										Damage to Fe Reclaim			
										Variance			

	SCALE MONITORING	2-Mary-19	3-May-19	4-May-19	6-May-19	6-May-19	7-May-19	8-May-19	
	Intake records (Mill)	368.823	204.736	219.767	208.456	- 1	219.356	239 826	1
49									
50	and the second se			125-78324	a marine	an and the	1000	Second Street	
51	Plan Milling(Hrs)	15.020	21.750	and the second se	and the second se	6.620	6.840	24.000	
52	Actual Milled(Hrs)	14.680	20.400	and the second se	a construction of the local division of the	6.610	6.600		
53	1BK wheat (MT)	228.160	318.258	215.265	and the state of the local division of the state of the s	102.676	104.753	And I REAL PROPERTY AND INCOME.	-
36	Flour (MT)	174.373	241.458	and the second	175.992	78.014	78.047	269.236	
57	By-product(MT)	47,102	64.305	and the second se	48.047	21.781	21.946	of the local division of the local divisiono	-
58	Total Product(FL+Byproduct)	221.48	305.76	207.46	224.04	99.80	99.99	sumplified of statements	-
	Total product percentage	97.07	96.07	96.37	96.58	97,19	95.46	56.47	-
-	Total Break Down	0.34	1.35	1.00	0.28	0.01	0.24	1.52	
22	Speed	15.54	15.60	14.91	15.07	15.53	15.87	15.96	
73 74 75 76 77 78		RDS POLLARD		our n Polard	3				

	1	2	3	4	5	6	7	
Plan hrs	15.02	21.75	15.44	15.67	6.62	6.84	24	
Actual hrs	14.68	20.4	14.44	15.39	6.61	6.6	22.48	
1BK MT	228.16	318.258	215.265	231.981	102.676	104.753	358.754	
FI MT	174.373	241.458	162.571	175.992	78.014	78.047	269.236	
Fd MT	47.102	64.304	44.89	48.047	21.781	21.946	76.859	
Total Product MT	221.475	305.762	207.461	224.039	99.795	99.993	346.095	Avg.
TP %	97.07%	96.07%	96.37%	96.58%	97.19%	95.46%	96.47%	96.5%
Break Down hrs	0.34	1.35	1	0.28	0.01	0.24	1.52	Avg.
Speed	15.54	15.60	14.91	15.07	15.53	15.87	15.96	15.50
JAG Actual Hours	14.68	20.4	14.44	15.39	6.61	6.6	22.48	Avg.
JAG Speed MT/hr	15.54	15.60	14.91	15.07	15.53	15.87	15.96	15.50

	1	2	3	4	5	6	7	
DM Wheat	191.6544	267.3367	180.8226	194.864	86.24784	87.99252	301.3534	
DM FI	149.612	207.171	139.4859	151.0011	66.93601	66.96433	231.0045	
DM FD	40.60192	55.43005	38.69518	41.41651	18.77522	18.91745	66.25246	
Total DM	190.214	262.601	178.1811	192.4177	85.71123	85.88178	297.2569	Avg.
Recovered DM	99.2%	98.2%	98.5%	98.7%	99.4%	97.6%	98.6%	15.50
DMLoss	0.75%	1.77%	1.46%	1.26%	0.62%	2.40%	1.36%	1.4%
DM MT Lost?	1.440	4.736	2.642	2.446	0.537	2.111	4.096	
Shake Down Time? Min	5.577	18.334	10.226	9.471	2.077	8.172	15.859	



	1	2	3	4	5	6	7	Aver	age
Wheat	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	B1%	TP%
Flour	76.4%	75.9%	75.5%	75.9%	76.0%	74.5%	75.0%	75.6%	78.4%
Feed	20.6%	20.2%	20.9%	20.7%	21.2%	21.0%	21.4%	20.9%	21.6%
	97.1%	96.1%	96.4%	96.6%	97.2%	95.5%	96.5%	96.5%	100.0%
								Avg.	
Moisture Loss Calc	2.30%	2.44%	2.40%	2.37%	2.28%	2.53%	2.39%	2.4%	
Calc. Moist and DM Loss	3.05%	4.21%	3.86%	3.62%	2.91%	4.93%	3.75%		
Calculated	96.95%	95.79%	96.14%	96.38%	97.09%	95.07%	96.25%		
Overall Reported	97.07%	96.07%	96.37%	96.58%	97.19%	95.46%	96.47%		
Difference	0.12%	0.28%	0.23%	0.20%	0.10%	0.38%	0.22%		

			Water Mass Calc	ulation	Dry Matter Mass Calc	ulation	
Product	MT	Moisture	Formula	Water (MT)	Formula	Dry Mater (MT)	
1BK Wheat	228.16	16.0%	Weight X Moisture %	36.51	Product Weight-Water Weight	191.65	
Flour	174.373	14.2%	Weight X Moisture %	24.76	Product Weight-Water Weight	149.61	
Feed	47.102	13.8%	Weight X Moisture %	6.50	Product Weight-Water Weight	40.60	
			Example 228.2	l6 X.16=36.51	Example 228.16-36.51=1		
Total Ma	ass Loss		Water Mass L	.OSS	Dry Matter Mass	LOSS	
Form	nula	Total (MT)	Formula	Water (MT)	Formula	Dry Mater (MT)	
Weight Out-	Weight In	-6.69	Water In-Water Out	5.24	Dry Matter In-Dry Matter Out	1.44	
Example (17	4.373+47.10	02)-228.16=-6.69	Example 36.51-24	4.76-6.50=5.24	Example 191.65 -	149.61-40.6=1.44	
			% Moisture Loss	(%)	% Dry Matter Loss	(%)	
			% of B1	2.30%	% of B1	0.63%	
			Example (5.24/228.16)*:	100=2.30	Example (5.24	/228.16)*100=2.30	

print-graph-paper.com

Laboratory Milling: Challenges in Wheat Crop Evaluation

Pre-Conference Workshop October 5, 2019

10th Annual Southeast Asia Region Conference & Expo Intercontinental Jakarta Pondok Indah Hotel Jakarta, Indonesia

Laboratory Milling Provides Opportunity To....

- Evaluate milling properties and characteristics of grain
- Produce material for further testing
- Predict large scale performance

Evaluation Set-Up

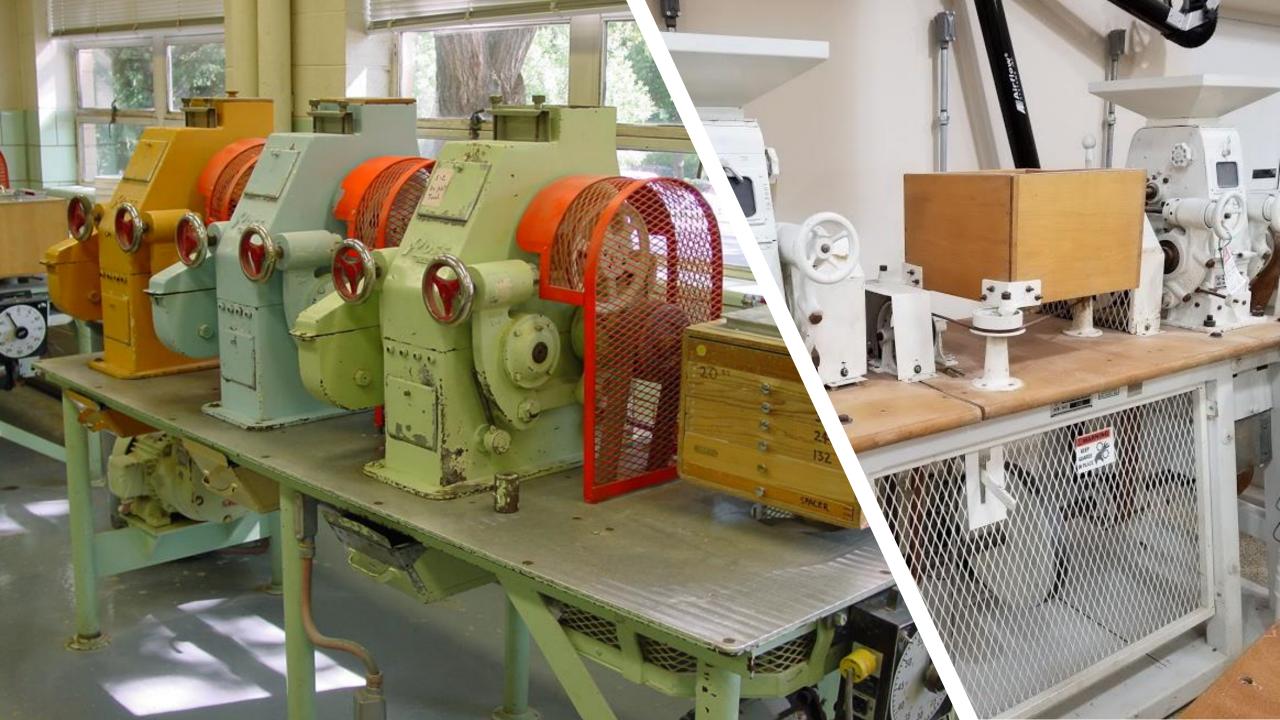
- Sample selection
- Sampling
- Grain tests
- Grain preparation
- Prepare mill

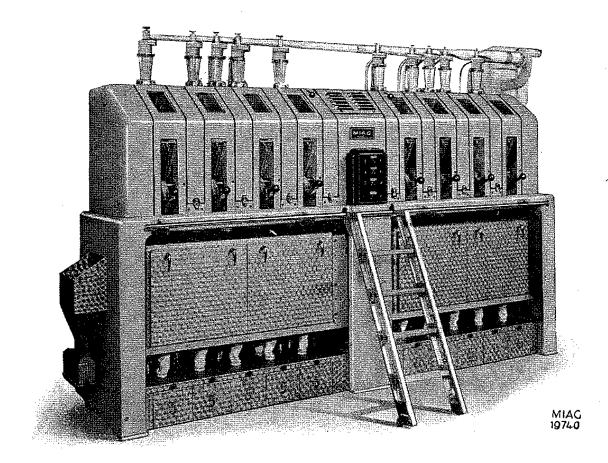
Experimental Mills

- Brabender Quadrumat Jr.
- Brabender Quadrumat Sr.
- Chopin Laboratory Mill
- Buhler Experimental MLU 202
- Ross or Allis Experimental Mill
- Miag Multomat Experimental Mill
- Pilot Mills
- Commercial Mill

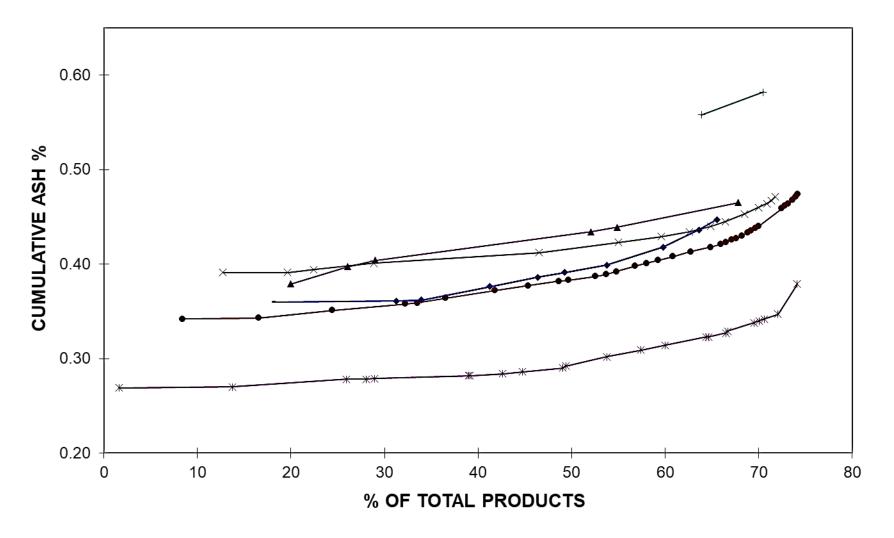
AACC International Approved Methods-Section 26 Experimental Milling

26-10.02 Experimental Milling: Introduction, Equipment, Sample Preparation, and Tempering 26-21.02 Experimental Milling—Bühler Method for Hard Wheat 26-22.01 Experimental Milling—Batch Method for Hard Wheat 26-30.02 Experimental Milling—Bühler Method for Soft Wheat Short-Extraction Flour 26-31.01 Experimental Milling—Bühler Method for Soft Wheat Straight-Grade Flour 26-32.01 Experimental Milling—Batch Method for Soft Wheat 26-41.01 Experimental Milling—Bühler Method for Durum Wheat 26-42.01 Experimental Milling—Bühler Method for Durum Wheat 26-50.01 Brabender Quadrumat Jr. (Quadruplex) Method 26-70.01 Chopin CD1 Laboratory Mill Method 26-95.01 Experimental Milling: Temper Table


Senior







Cumulative Ash Curves For Experimental Mills

→ Quad Sr. → Buhler → Allis Mill → Pilot Mill → Commercial Mill → Quad Jr. → Multomat

Dinesh Mehrotra, 1963. Predicting Commercial Milling Results by Experimental Means, Master's Thesis, Kansas State University

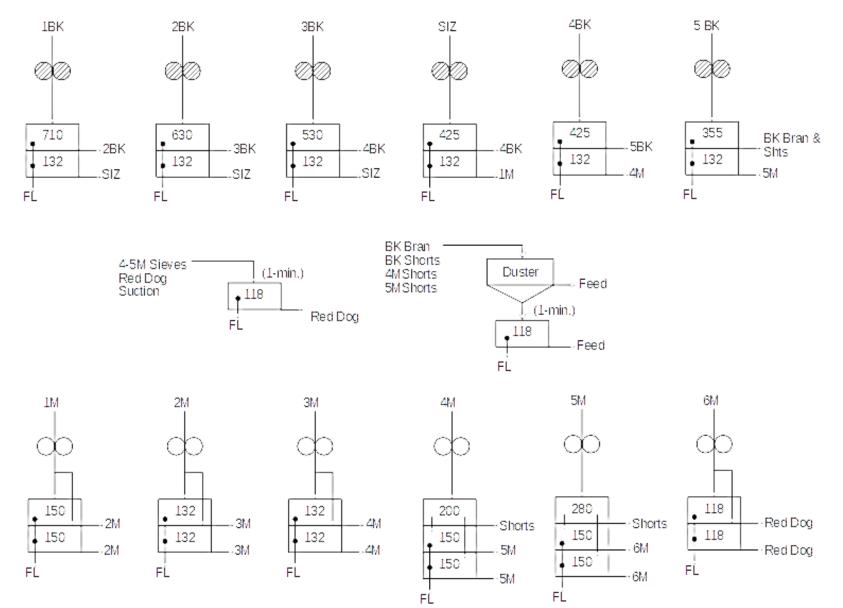
Laboratory Mill Grinding and Sifting Operations

	FI	ours			
	Break	Reduction	Feed	Adjust	Adjustment Mode
Quad. Jr.	1	1 or 2	1	No	Manual non-operating
Quad. Sr.	1	1	1	No	Manual non-operating
Chopin	1	1	2	No	Pre-set
Bühler	3	3	2	Yes	Linked 3 Operations (L and R)
Ross/Allis	5	8	4	Yes	Independent (L and R)
Miag	/liag 3 5		4 or 5	Yes	Independent (In/out)
Bühler Tandem	5	7	5	Yes	Linked 3 Operations (L and R)

Laboratory Vs. Commercial Mill

- Yields (65-71%) and Commercial Mill Yields (74-78%)
- Coarse and fine systems
- Gradual corrugation selection for breaks
- Impact Grinding
- Purifiers
- Bran and Shorts Dusters
- Enclosed system

Tandem Mill- Bühler



Martin, D.G., and Dexter, J.E. 1991. A Tandem Buhler Laboratory Mill: Its Development and Versatility. AOM Bull. April: 5855-5864.

USDA/ARS Tandem Mill August 20, 2018 JAG

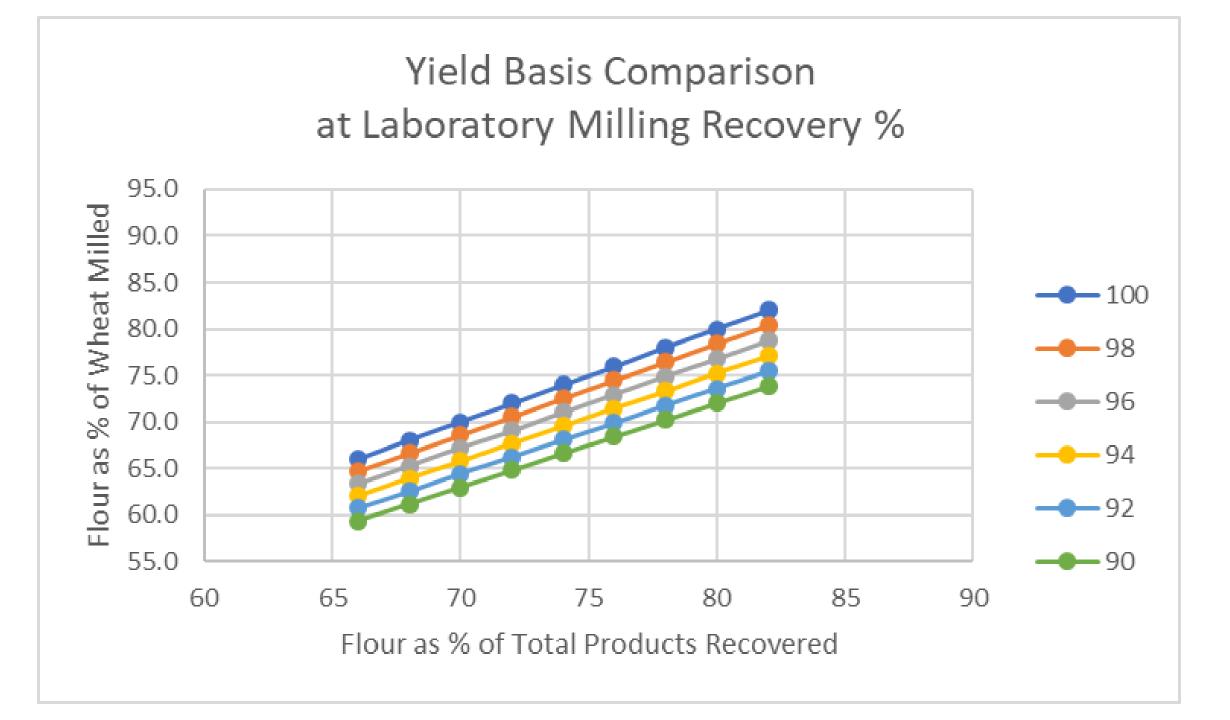
2018 Results

	Control Sa	Control Sample Milling							
	Flour T. P.	Recovery	FI. Wheat	F					
	%	%	%						
Average	76.5	97.5	74.5	Avg					
Std. Dev.	0.6	1.0	0.5	Std. Dev.					
Max.	78.0	99.5	75.3	Max.					
Min.	75.7	95.5	73.6	Min.					
Range	2.3	4.0	1.7	Range					
CV%	0.84%	1.03%	0.70%	CV %					

	Survey Sai	mple Milling	1
	Flour T. P.	Recovery	FI. Wheat
	%	%	%
vg	75.2	96.5	72.6
td. Dev.	1.1	1.5	1.2
ax.	78.5	100.8	76.5
in.	73.4	93.0	69.9
ange	5.1	7.8	6.6
V %	1.5%	1.5%	1.7%

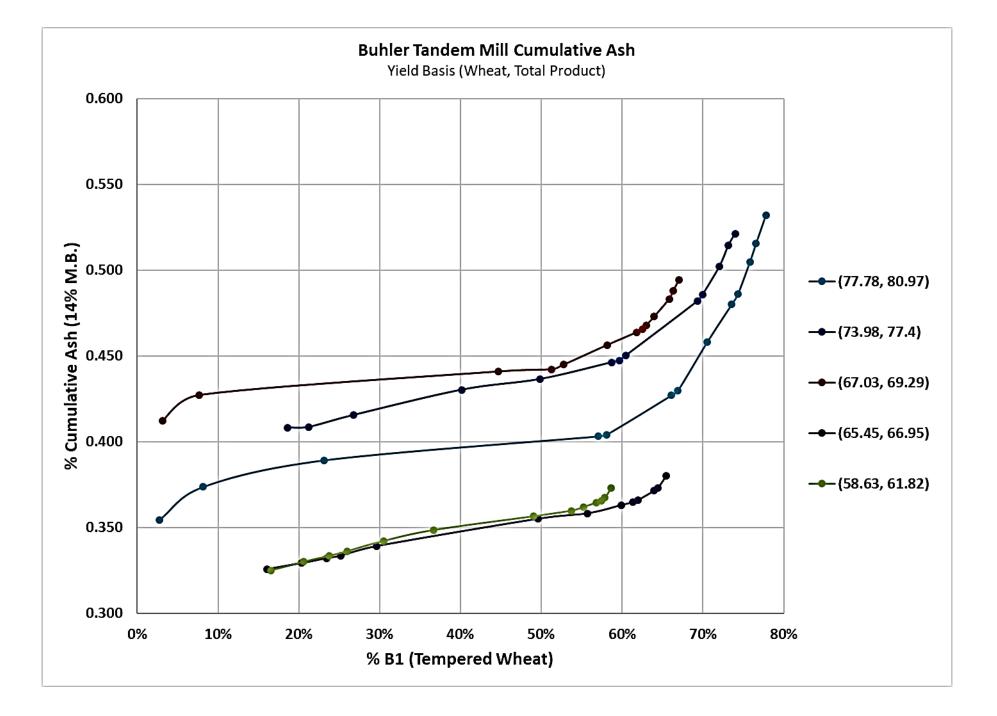
2018 Control vs. Survey

		Co	ontrol N=22	2			Survey N=89						
	Average	Std. Dev.	Min.	Max.	Range	Average	Std. Dev.	Min.	Max.	Range			
1BK	3.07%	0.37%	2.21%	4.01%	1.80%	1.99%	0.43%	1.06%	3.12%	2.06%			
2BK	3.23%	1.13%	1.87%	5.55%	3.68%	2.61%	0.99%	0.68%	5.21%	4.53%			
3BK	1.67%	0.42%	1.03%	2.34%	1.31%	1.40%	0.34%	0.67%	2.14%	1.48%			
SIZ	19.03%	2.06%	15.61%	23.34%	7.73%	15.03%	2.37%	11.46%	19.92%	8.47%			
4BK	1.58%	1.13%	0.85%	6.41%	5.56%	1.21%	0.89%	0.68%	7.43%	6.74%			
5BK	0.84%	0.17%	0.65%	1.40%	0.76%	0.72%	0.12%	0.44%	1.22%	0.78%			
1M	29.43%	2.71%	24.79%	32.63%	7.84%	27.55%	2.33%	19.71%	32.52%	12.81%			
2M	8.21%	0.82%	6.50%	10.23%	3.73%	10.39%	1.19%	7.45%	13.76%	6.30%			
3M	3.53%	0.51%	2.56%	4.76%	2.20%	4.93%	1.03%	2.14%	7.71%	5.56%			
4M	4.91%	1.83%	1.10%	7.26%	6.16%	5.88%	1.89%	1.04%	10.33%	9.28%			
5M	1.32%	0.37%	0.73%	2.02%	1.29%	1.71%	0.49%	0.53%	2.61%	2.08%			
6M	1.78%	0.51%	0.49%	2.79%	2.30%	1.91%	0.53%	0.25%	3.53%	3.28%			
Bran & BK SHT (BBS)	14.70%	1.08%	12.89%	16.85%	3.96%	15.93%	1.10%	13.86%	18.69%	4.83%			
Red Dog	0.93%	0.50%	0.40%	2.52%	2.12%	0.88%	0.31%	0.37%	2.56%	2.19%			
4MS (4M SHTS)	1.33%	0.50%	0.54%	2.41%	1.87%	1.81%	0.49%	0.37%	3.03%	2.66%			
5MS (5M SHTS)	1.04%	0.47%	0.52%	2.67%	2.15%	1.32%	0.45%	0.17%	2.55%	2.38%			


Reporting Basis Comparison

		<u>% of Total Products</u>								
% Recovery	82	80	78	76	74	72	70	68	66	
100	82.0	80.0	78.0	76.0	74.0	72.0	70.0	68.0	66.0	
98	80.4	78.4	76.4	74.5	72.5	70.6	68.6	66.6	64.7	
96	78.7	76.8	74.9	73.0	71.0	69.1	67.2	65.3	63.4	
94	77.1	75.2	73.3	71.4	69.6	67.7	65.8	63.9	62.0	
92	75.4	73.6	71.8	69.9	68.1	66.2	64.4	62.6	60.7	
90	73.8	72.0	70.2	68.4	66.6	64.8	63.0	61.2	59.4	
Range	8.2	8.0	7.8	7.6	7.4	7.2	7.0	6.8	6.6	

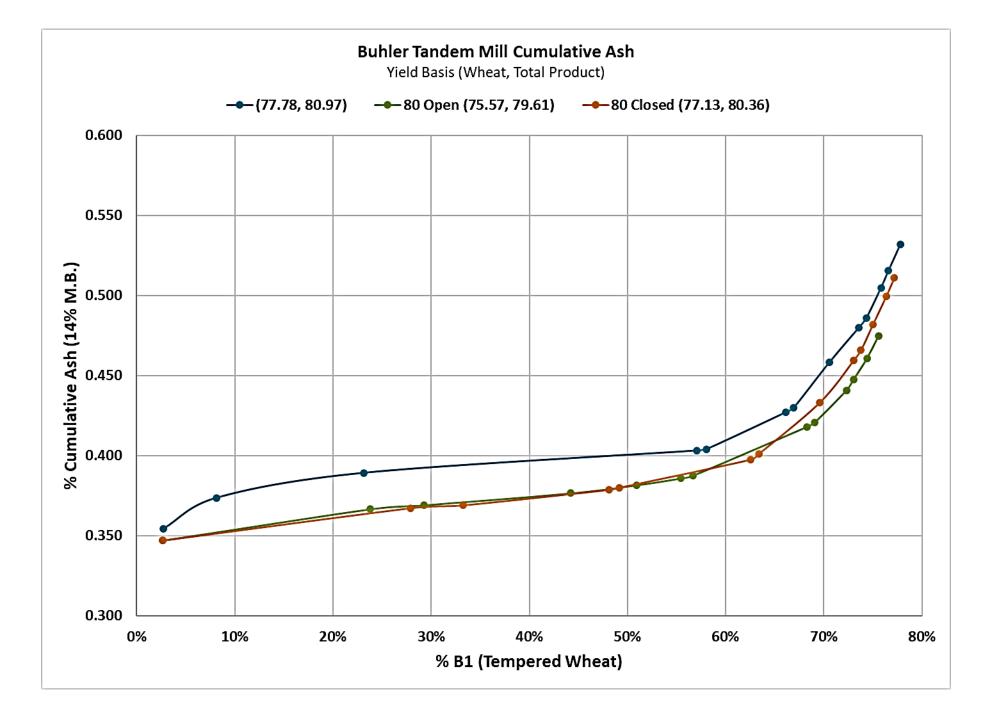
0/ of Total Draducts


Covert Flour Yield % Basis Total Products to Flour Yield % Basis Wheat

	<u>Input</u>		Output
Flour as % Total Products	78	Flour as % Wheat	74.9
Lab Milling Recovery %	96		

Yield Study

Wheat Data	Unit and Basis	Everest	1863
Moisture	% as-is	10.44	10.57
Ash	(%) 14% moisture basis	1.719	1.308
Protein	(%) 14% moisture basis	12.07	10.70
Single Kernel Data	Hardness Index Average	66.49	49.34
	St. Dev.	18.24	16.91
	Moisture (%) Average	9.39	9.78
	St. Dev.	0.88	0.60
	Weight (mg) Average	33.26	28.69
	St. Dev.	8.12	6.21
	Size (mm) Average	2.73	2.57
	St. Dev.	0.30	0.27
	Classification	Hard	Mixed



			Target F	lour Extr	action %)
Milling Data	Unit and Basis	80	75	70	65	60
Flour Yield	(%) basis wheat milled	78.1%	74.0%	67.0%	65.5%	58.6%
Recovered Products	(%) basis wheat milled	96.4%	95.6%	96.7%	97.8%	96.4%
Flour Yield	(%) total products recovered	81.1%	77.4%	69.3%	67.0%	60.8%

			Target F	lour Extra	ction %	
Flour Data	Unit and Basis	80	75	70	65	60
NIR-Mill	Moisture (%) as-is	14.13	14.06	13.81	13.86	13.95
	Ash (%) 14% moisture basis	0.530	0.458	0.412	0.377	0.371
	Protein (%) 14% moisture basis	10.56	10.35	9.84	9.82	9.79
Thermogravimetric	Moisture (%) as-is	13.74	13.72	13.44	13.50	13.59
Analyzer (TGA)	Ash 14 % moisture basis	0.657	0.576	0.518	0.448	0.437
	Protein (%) 14% moisture basis	10.45	10.19	9.70	9.56	9.50
NIR-Lab	Moisture (%) as-is	13.97	14.01	13.73	13.78	13.85
	Ash (%) 14 % moisture basis	0.541	0.459	0.425	0.387	0.379
	Protein (%) 14% moisture basis	10.49	10.26	9.79	9.78	9.73
Ash (Furnace)	Ash (%) 14% moisture basis	0.609	0.466	0.416	0.387	0.379
Starch Damage	lodine Absorption (%)	96.62	95.24	96.31	95.31	93.58
SD Matic	AACC76-31 (%)	6.77	5.70	6.51	5.75	4.55
	Farrand Units	48.1	34.5	44.8	35.3	21.8

			Target F	lour Extra	ction %	
Dough Data	Unit and Basis	80	75	70	65	60
Mixograph	Mix Absorption (%) as-is)	61.1	60.5	60.0	60.0	59.8
	Flour Absorption (%) as-is	61.1	60.5	59.7	59.7	59.7
	Mix Time (min)	4.0	4.1	4.2	4.2	4.3
	Mix Tolerance (min)	2.0	2.0	2.7	1.7	1.0
Alveograph	P (mm) tenacity	89.7	73.7	94.3	76.3	71.7
	L (mm) extensibility	73.3	85.3	71.7	75.3	77.3
	G (mm) swelling index	19.1	20.6	18.8	19.3	19.6
	W (10 ⁻⁴ J) baking strength	222.7	219.3	242.7	206.3	198.7
	P/L (ratio) configuration ratio	1.2	0.9	1.3	1.0	0.9
	le (%) elasticity index	51.9	57.3	55.4	55.9	56.4
Farinograph	Absorption (%) as-is	58.7	56.6	58.7	56.2	55.3
	Absorption (%) 14% moisture basis	58.7	56.6	58.4	56.0	55.1
	Development (min)	5.6	6.0	5.0	5.7	6.6
	Stability (min)	9.5	10.5	12.6	11.2	12.4
	Tolerance Index	31.0	29.0	11.0	23.7	26.3
	Breakdown (min)	10.6	11.2	13.5	11.6	12.6
	Quality Number	106.7	111.7	135.0	116.3	126.3

			Target F	Flour Extra	ction %	
Baking Data	Unit and Basis	80	75	70	65	60
Test Bake	Flour Absorption (%) as-is	62.0	60.7	62.0	60.9	60.2
	Flour Absorption (%) 14 % moisture basis	62.0	60.7	61.7	60.6	60.0
	Bake Mixing Tolerance Index	4.2	4.5	4.7	4.4	4.5
	Crumb Score	2.8	3.2	3.5	3.2	3.2
	Loaf Volume (cc)	895.0	858.3	845.0	861.7	871.7
	Dough Weight (gms)	171.7	170.3	171.6	170.2	170.5
	Proof Height (cm)	7.2	7.2	7.2	7.0	6.9
	Loaf Weight (gms)	150.5	147.6	150.2	148.9	149.4
	Color	Dark Yellow	Yellow	Slight Yellow	Yellow	Yellow

		Target Flo	ur Extrac	tion %
Milling Data	Unit and Basis	Open	Closed	Std.
Flour Yield	(%) basis wheat milled	75.57%	77.18%	77.78%
Recovered Products	(%) basis wheat milled	94.93%	96.05%	96.05%
Flour Yield	(%) total products recovered	79.61%	80.36%	80.97%

		Grin	ding Me	thod
Flour Data	Unit and Basis	Open	Closed	Standard
NIR-Mill	Moisture (%) as-is	13.89	14.13	13.97
	Ash (%) 14% moisture basis	0.497	0.526	0.541
	Protein (%) 14% moisture basis	10.54	10.52	10.49
Thermogravimetric	Moisture (%) as-is	13.69	13.92	13.74
Analyzer (TGA)	Ash 14 % moisture basis	0.585	0.633	0.657
	Protein (%) 14% moisture basis	10.25	10.36	10.45
NIR-Lab	Moisture (%) as-is	13.89	14.13	13.97
	Ash (%) 14 % moisture basis	0.497	0.526	0.541
	Protein (%) 14% moisture basis	10.54	10.52	10.49
Ash (Furnace)	Ash (%) 14% moisture basis	0.523	0.580	0.610
Starch Damage SD	lodine Absorption (%)	95.74	96.12	96.62
Matic	AACC76-31 (%)	6.08	6.36	6.77
	Farrand Units	39.24	42.87	48.11

		Grin	ding Me	thod
Dough Data	Unit and Basis	Open	Closed	Standard
Mixograph	Mix Absorption (%) as-is)	61.1	60.8	61.1
	Flour Absorption (%) as-is	61.0	61.0	61.1
	Mix Time (min)	4.0	4.1	4.0
	Mix Tolerance (min)	1.0	1.0	2.0
Alveograph	P (mm) tenacity	79.0	85.0	89.7
	L (mm) extensibility	85.0	76.0	73.3
	G (mm) swelling index	20.5	19.4	19.1
	W (10 ⁻⁴ J) baking strength	229.0	223.0	222.7
	P/L (ratio) configuration ratio	0.9	1.1	1.2
	le (%) elasticity index	56.0	53.8	51.9
Farinograph	Absorption (%) as-is	61.0	58.5	58.7
	Absorption (%) 14% moisture basi	60.9	58.6	58.7
	Development (min)	7.5	5.2	5.6
	Stability (min)	10.6	9.5	9.5
	Tolerance Index	36.0	28.0	31.0
	Breakdown (min)	11.8	10.6	10.6
	Quality Number	118.0	106.3	105.7

		Grin	ding Me	thod
Baking Data	Unit and Basis	Open	Closed	Standard
Test Bake	Flour Absorption (%) as-is	62.7	62.4	62.0
	Flour Absorption (%) 14 % moistur	62.6	62.5	62.0
	Bake Mixing Tolerance Index	4.5	4.3	4.2
	Crumb Score	3.0	2.8	2.8
	Loaf Volume (cc)	910.0	878.3	895.0
	Dough Weight (gms)	172.8	172.4	171.7
	Proof Height (cm)	7.4	7.2	7.2
	Loaf Weight (gms)	152.4	151.6	150.5
	Color	Yellow	Dark Yellow	Dark Yellow

Acknowledgements

- Plains Grain Incorporated-Mark Hodges-Executive Director
- USDA/ARS/CGAHR-Grain Quality & Structural Research Unit-Dr. Brad Seabourn-Supervisory Research Food Technologist
- Kansas Wheat Commission-Justin Gilpin-CEO

JAG .

	_	_											_	_	_		 _	 _	-				_		
										 							 	 	-						
		_	_			 		_		 _	 	 	 	_	_	 _	 	 	-	_					<u> </u>
									_	 		 	 _			 _	 _	 _				_			
									_								_					_	_	_	
		_	_							 _	 	 	 		_		 -	 	-	_					
L																	 	 							
									_																
						\vdash							 				 _	 	\rightarrow						
									_							_	 _		\rightarrow	_					
<u> </u>						\vdash	\vdash										 -	 	\rightarrow						
									_	 		 				 	 _	 _							
																								_	
																								_	
		_	_					_	_			_	_	_	_	 _	 	 	-	_					
									_	 	 	 	 _	_		 _	 	 							
										 			 			 	 	 	_						
																 	 		- 1						(I
																								_	
<u> </u>									-							-	 -	 	\rightarrow	_		-			
L																	 	 							
 																	 	 							
																								_	
																	-		-	_					
—																	 	 	\rightarrow						
L																	 _	 							
L																									
																			-						
									-							_	 -	 	-	_		-			
<u> </u>						$ \rightarrow $											 _	 	\rightarrow						
					 					 			 			 	 		-			 			

	_	_											_	_	_		 _	 _	-				_		
																	 	 	-						
		_	_			 		_		 _	 	 	 _	_	_	 _	 	 	-	_					<u> </u>
									_	 		 	 _	_		 _	 _	 _				_			
									_								_						_	_	
		_	_							 _	 		 		_		 -	 	-	_					
L																	 	 							
									_																
						\vdash							 				 _	 	\rightarrow						
									_							_	 _		\rightarrow	_					
<u> </u>						\vdash	\vdash										 -	 	\rightarrow						
									_	 		 				 	 _	 _							
																								_	
																								_	
		_	_					_	_			_	_	_	_	 _	 	 	-	_					
									_	 	 	 	 _	_	_	 _	 	 							
										 			 			 	 	 	_						
																 	 		- 1						(I
																								_	
<u> </u>									_							-	 -	 	\rightarrow	_		-			
L																	 	 							
 																	 	 							
																								_	
																	-		-	_					
—																	 	 	\rightarrow						
L																	 _	 							
L																									
																			-						
									-							_	 -	 	-	_		-			
<u> </u>						$ \rightarrow $											 _	 	\rightarrow						
					 					 			 			 	 		-			 			

	_	_												_	_	_		 _	 _	-						
										 								 	 	-						
		_	_			 		_		 _	_	 		 _	_	_	 _	 	 	-	_	 				<u> </u>
									_	 				 _			 _	 _	 _				_			
									_									_						_	_	
		_	_							 _		 		 -		_		 -	 	-	_					
L																		 	 							
									_								_									
						\vdash								 				 _	 	\rightarrow						
									_								_	 _		\rightarrow	_					
<u> </u>						\vdash	\vdash								_			 -	 	\rightarrow						
									_	 							 	 _	 _							
																									_	
																									_	
		_	_					_	_				_	_	_	_	 _	 _	 	-	_					
									_	 		 		 _	_		 _	 	 							
										 				 			 	 	 	_						
																	 	 		- 1						(I
																									_	
<u> </u>									_								-	 -	 	\rightarrow	_		-			
L																		 	 							
 																		 	 							
																									_	
																		-		-	_					
—																		 	 	\rightarrow						
L																		 _	 							
L																										
																				-						
									-								_	 -	 	-	_		-			
<u> </u>						$ \rightarrow $												 _	 	\rightarrow						
					 					 				 			 	 		-			 			

	_	_											_	_	_		 _	 _	-						
										 							 	 	-						
		_	_			 		_		 _	 	 	 _	_	_	 _	 	 	-						<u> </u>
									_	 		 	 _			 _	 _	 _				_			
																	_						_	_	
		_	_							 _	 	 	 -		_		 -	 	-	_					
L																	 	 							
									_																
						\vdash							 				 _	 	\rightarrow						
									_							_	 _		\rightarrow	_					
<u> </u>						\vdash	\vdash										 -	 	\rightarrow						
									_	 		 				 	 _	 _							
																								_	
																								_	
		_	_					_	_			_	_	_	_	 _	 	 	-	_					
									_	 	 	 	 _	_		 _	 	 							
										 			 			 	 	 	_						
																 	 		- 1						(I
<u> </u>									-							-	 -	 	\rightarrow	_		-			
L																	 	 							
 																	 	 							
																								_	
																	-		-	_					
—						\vdash											 	 	\rightarrow						
L																	 _	 							
L																									
									-							_	 -	 	-	_					
<u> </u>																	 _	 	\rightarrow						
					 					 			 			 	 		-			 			