

Metal Control Technology

Kyle Rhodes, Sales and Marketing Manager

 Magnets | Material Handling | Electronic Inspection | Service

 Protecting and Moving the World through Innovation

Confidential

Why Metal Control

- Protect purity of your product which reduces potential risk of recall, damage to brand reputation and financial liability
- Protecting equipment reduces downtime, maintenance costs and risks of fire hazards or explosion

Ferrous metal on magnet after one week of operation at on receiving leg of mill

Presentation Overview

- Principles of Magnetic Separators
 - Materials and Terms
 - Separator Design
 - Care and Maintenance
- Principles of Metal Detection
 - Operating Principles
 - Variables of Sensitivity
- Food Safety and FSMA
 - Control Point or Critical Control Point
 - Monitoring and Validation
 - Reporting and Record-keeping Requirements
- X-ray Applications in Milling

Company Timeline

Confidential

My Background

- 8+ years working at MPI
 - Manufacturing > Purchasing > Inside sales > Outside sales
- Bachelors & MBA from Michigan State University
- Certified Food Safety HACCP Manager
- Certified Magnet Auditor
- Guest Speaker at International Association of Operative Millers meetings

Principles of Magnetic Separators

Confidential

Magnet Life Expectancy

Confidential

• Modern magnets boast an estimated loss of life equal to less than one half of one percent every 100 years

MGOe – Megagauss-oersteds

- Unit of measure for maximum stored energy in magnet
- Maximum energy product (often abbreviated BHmax)

Protection Work

Protecting and Moving the World through Innovation

Ceramic Magnetic Material

- Developed in 1952
- Manufactured of Iron Oxide and Strontium or Barium
- Advantages of Ceramic Magnets
 - Low cost
 - Highly resistant to corrosion
 - High Tmax (maximum normal operating temperature) of 572F
 - High Curie Temperature (temperature at which the magnet will become permanently demagnetized) 860F
- Disadvantages of ceramic magnets
 - Maximum MGOe of 3.5 limits suitable applications for target tramp metal

Rare Earth Magnet Material

- Developed in 1966 and ongoing development
- 2 types: Samarium Cobalt (Samarium, Cobalt and Iron) and Neodymium (Neodymium, Iron and Boron)
- Not "rare" just a rare earth element
- Most common: neodymium
 - Advantages
 - High MGOe 52+ resulting in more efficient and effective magnetic separators
 - Disadvantages
 - They are easily oxidized
 - They have low corrosion resistance
 - They have only moderate temperature stability starting at 176 F at higher grades and up to 356 F at lower grades
 - They are brittle so are subject to damage from shock or vibration

compo

Protecting and Moving the World through Innovation

Magnet Material Development

Magnet Material Properties

- Choosing the proper magnet material:
 - Target tramp metal
 - Operating temperatures
 - Size restrictions

Magnet Material	Max. Energy Product (MGO)	Max. Operating Temperature (ºF)
Ceramic 8	3.5	400
Samarium-Cobalt SCHT3	30	662
Neodymium-Iron-Boron 38HT2	38	356
Neodymium-Iron-Boron 48HT1	48	248
Neodymium-Iron-Boron 52REN	52	176

6696. 6087. 5478. 4870. 4261. 3652. 3043. 2435. 1826. 1217

Application to Separators

- Every manufacturer has access to the same materials and the various grades
- Difference in separators is how the circuits are designed
- Manufacturers use the same circuit designs
- The difference in performance from manufacturer to manufacturer depends on:
 - Grade of material used
 - Composite material construction
 - Tube thickness
 - Magnetic material size / amount
 - Size of poles
 - Overall tolerances

Confidential

Magnetic Circuit Design

How do separation magnets work?

Confidential

"Type A" Separator Application

Cutaway view of a Magnetic Tube with product flow in a gravity conveying system. Tramp Metal Retention Area

> Cutaway view of a Pneumatic Line Magnet with product flow in a dilute phase conveying system.

"Type A" Magnetic Circuit

Magnetic Tube Flux

The "Strongest Magnetic Tube"

- Tubes Not bars
- Thickness of stainless tube = durability and performance
- Air gap distance between pole piece and product contact point

Pros	Cons
Increased holding value	Decrease in durability – tubes are easily
Increased Gauss	can quickly wear through completely

The "Strongest Magnetic Tube"

- Uncoated vs. coated neodymium
- Nickel coating adds air gap but protects from oxidation

Pros	Cons	
Increased holding value	Oxidization (similar to rusting) breaks down the structure of the magnet	
Increased Gauss	resulting in a progressive loss of magnetic performance, during which the magnet will weaken and break down into a powder	
nfidential	800.544.5930 www.mpimagnet.com	24

Performance Results

Confi

	1	ube Style		
	Ceramic	Rare Earth	Hi-G	Thin Wall**
1/4" Ball Pull Values*	0.3 lbs	5.0 lbs	5.5 lbs	6.3 lbs
1/2" Ball Pull Values*	1.2 lbs	12.7 lbs	15.5 lbs	16.7 lbs
Gauss Value*	2800	10,000	10,600	11,500
Tube Durability		•••		•
Price	•	••		
			γ	
		52 MC	60 & nickel	coated
ntial	800.544.593	0 / www.mpimagnet.com		

Circuit "Type B" Magnet Examples Magnetic Chutes Plate Magnets **Hump Magnets** -SOUTH Tramp Metal Magnetic **Retention Area** Field Confidential www.mpimagnet.com 800.544.5930

"Type B" Principles of Application

Mounted to Bottom of an Angled Chute

Cross-Mounted in a Vertical-Flow Gravity Chute

Suspended Over a Conveyor Belt or an Angled Chute

Plate Magnet Selection for Chute Installation

Magnet Type	Tramp Metal	Max Burden	Size / Weight
Ceramic	Large	6-8″	Medium
Rare Earth	Small to large	3-4"	Low
Hi-G Hybrid	Small to large	6-8″	High

Circuit "Type C" Magnet Examples

"Type C" Principles of Application

Care and Maintenance

Confidential

The Basics

It really doesn't matter how strong this magnet is...

- Before selection consider how it will be cleaned
- 2. Once installed, establish cleaning schedule & document
- 3. Test yearly (minimum) for loss of strength or increase and inspect for wear

...Once it gets to this

Why test your magnets?

How Magnets Lose Strength

Heat - Heat above the maximum level rated for the magnet material in your separator will decrease the strength of the magnet. Standard rare earth material from MPI has a maximum temperature of 176°F and standard ceramic material has a maximum temperature of 400°F. Higher temperature materials are available and may have been used in your system. Consult the factory if you have questions on what the maximum temperature is for your system.

Impact - Sharp impacts to the magnet from physical abuse or handling can result in the decreased magnet strength. The magnet material inside your separator is brittle and these impacts can lead to fractures in the material, weakening its strength.

Welding - Welding on or around the magnet can lead to decreased magnet performance. This can be a result of the heat or current generated from the welding process.

Liquid ingress - If your magnet housing is compromised, moisture can enter the housing of the magnets. This can lead to oxidation of the magnet material which will eventually lead to a weakened magnetic system. If the housing is compromised, the magnet should also be replaced for sanitary concerns.

Gauss Meter: Measures flux density

Protecting and Moving the World through Innovation

How to Test Magnets

Pull Test: Measures holding force

Principles of Metal Detection

Balanced Coil Metal Detector

Variable of Sensitivity

- Aperture size and type of detector
- Type of metal detected
- Position of the metal inside the detector
- Environmental conditions
- Product effect of the material being examined
- Orientation of metal
- Detection frequency

Sensitivity: Aperture size and type

- Larger aperture = less sensitivity
- Built only to size required for package or spout

Sensitivity: Kind of Metal

- Ferrous Iron and magnetic steel: have a high permeability **and** are good electric conductors. They are the easiest to detect.
- Non-ferrous Brass, copper and aluminum: have low permeability but are good conductors. They are less detectable than ferrous.
- Stainless Steel: Has low permeability and are not good conductors, which is why it is the most difficult to detect.
 Varying grades of stainless steel have different characteristics.

Sensitivity: Position of Metal

 Complete all testing and validation at position 3 – worst case scenario

Sensitivity: Environmental Conditions

- External "noise" and poor installation affect the detectors signal stability and can lead to false tripping or reduced performance
- The most common sources of "noise" are:
 - Vibrations Metal detector sees vibration at almost same phase angle as ferrous metal
 - Frequency interference caused by other electrical equipment (VFD's)
 - Moving metals inside the metal free zone
 - Intermittent eddy-current loops in the construction of the conveyor
 - Static electricity on the production floor or product
 - Coil not properly isolated during mounting
 - Contamination in belt / dirty belt

Sensitivity: Product Effect

- A products impact on the magnetic field is referred to as the "Product effect"
- Product effect categorized into two basic groups:

Non conductive or "Dry Products" such as flour = low product effect

Conductive products or "Wet Products" such as meat or cheese = high product effect

Product effect must be compensated for or "learned" in order to not have false rejects.

Protecting and Moving the World through Innovation

Sensitivity: Orientation of metal

Metal Control & FSMA

Confidential

Pro Wc

Do control measure(s) exist for the identified hazard?

01

Protecting and Moving the World through Innovation

Control Point or Critical Control Point

- <u>Control Point</u>: Any step at which biological, chemical or physical factors can be controlled
- <u>Critical Control Point</u>: A step at which control can be applied and **is essential to prevent or eliminate** a food safety hazard or reduce it to an acceptable level
- <u>Critical Limit</u>: A maximum and/or minimum value to which a biological, chemical or physical parameter must be controlled at a CCP to prevent, eliminate or reduce to an acceptable level the occurrence of a food safety hazard

1		1		I 1	
		÷		† I	
	YES	NO	Modify step,	process or pr	oduct.
	Ļ	Ļ		Ť	
	↓ Is contro	l at this step neces	sary for safety?	\rightarrow YES	
	Ļ	Ļ			
	Ļ	NO \rightarrow	Not a CCP \rightarrow	STOP*	
Q2.	Does this step eliminate	or reduce the like	ly occurrence of a	hazard to an	acceptable level?
	Ļ				Ļ
	NO				YES
	Ļ				Ļ
Q3.	Could contamination w	ith the identified h	azard(s) occur in e	excess	Ļ
	of acceptable level(s) or	r could it increase t	to an unacceptable	e level(s)?	Ļ
	Ļ	Ļ			Ļ
	YES	NO →	Not a CCP \rightarrow	STOP*	Ļ
	Ļ				Ļ
Q4.	Will a subsequent step of	eliminate the identi	ified hazard(s) or		Ļ
	reduce its likely occure	ence to an acceptab	le level?		Ļ
	ţ		Ļ		Ļ
	YES \rightarrow Not a CCP	→ STOP*	NO		Ļ
			Ţ		Ţ
		CI	RITICAL CONTR	OL POINT	•
					_

Magnets

- Maintain cleaning schedule and document when completed
- Develop performance standard
- Audit / test magnet at least yearly and document results

Plant Location: Magnet ID. #:		Depart	ment: t Location:	
Magnet should be cleaned every	hc	ours.		
Date Inspected By	Date	Inspected By	Date	Inspected By
	-			

Protecting and Moving the World through Innovation

Protecting and Moving the World through Innovation 800.544.5930 | www.mplmagnet.com | 683 Town Center Dr. Hgnland. MI 48357

MAGNET AUDIT INSPECTION FORM

idit Date: 06/80/2001	Priority:	C
empany:	Department:	
ant Location:	Magnet Location:	
oplication: Primary	Magnet ID:	
	Magnet Material:	Rare Earth

System Description: Prior to screener

Magnet Size/Description: 10" drawer magnet with 2 tiers (4 over 5) of 1" tubes on 2" centers. Self clean design

examples

Protecting and Moving the World through Innovation

Metal Detection

- Test internally every on a regular basis (often each shift)
- Calibrate / Validate by independent third party at least yearly
- Looks for systems which have features such as:
 - Automatic printing of HACCP reports
 - Onboard data logs
 - Password protection
 - PVS (Performance Validation Software)

on	fid	ont	ial
OII	nu	ent	Iai

200 511 5020	www.mnimagnet.com
300.344.3730	www.mpimagnet.com

				F	eport#:	
		General I	nformation			
Contact Name / Tit	le:					
Company:			Address:			
Machine Type:			Check Date:			
Machine Serial#:			Next Calibration Due:			
		Physica	I Checks			
Voltages:			Belt:			
Salety Circuit:			Connections:			
Rollers/Bearings:			Reject System:			
Note: Tick (V) = Pass, Cro	ss (X) = Falled and M	drie (0) = Williout				
		Product E	escription			
Product Name:			Notes:			
Description:						
Weight:						
		Inspection	of Sensitivity			
Without Products			With Products			
Photo de la	Foucia (Let.	Non Ferrous (N Fe) 15 mmons G109 (35)	-	Forrous (F-0)	Non Ferrous (N-Fe)	cyneaus cyon
Damelor Damelor			Damour Store (*)			
Skenil Amerika inde			Secol Arceliado Inda			
Detection Reliability*		-	Detection Bullability*	1	-	-
The Detection Reliate	ity describer out	of how many trials the product we	detected competiv			
Note: To achieve exactly the sovecoment of the factory,	r same figures ment product characterist	ivered in this document, it is obligatory to u les and operating struction of the motal do	se exactly the same product, loctor.	and settings. The c	alibration depends on l	72
Authorized Service	Engineer					
Name			Date			
	PI	otecting and Moving	the World thro	ough Inno	vation	
	- BAALBELL	with phone is provided in the line of the	and a state of the second			

Note on X-ray

- X-ray is another technology for metal control
- X-ray technology inspects product based on density
- For more information on x-ray in the milling industry, contact MPI

Questions and Contact

Kyle Rhodes Sales & Marketing Manager

m. 248.866.0194 e. kyle.rhodes@mpimagnet.com

Confidential

MPI Magnets | Material Handling Electronic Inspection | Service

683 Town Center Drive Highland, MI 48357

800.544.5930 info@mpimagnet.com | www.mpimagnet.com

