Integrated Pest Management (IPM): Mistakes and Solutions

Bhadriraju Subramanyam (Subi), PhD University Distinguished Professor Department of Grain Science and Industry Kansas State University Manhattan, KS 66506 Email: sbhadrir@ksu.edu Website: www.grains.ksu.edu/spirel/

> IAOM India Conference December 3-4, 2018 Greater Noida, India

Pest control versus management

• Control = elimination

- Hard to measure or accomplish in "real world" situations
- "absence of evidence is <u>NOT</u> evidence of absence"
- Management = maintain populations at acceptable levels
- Management is with reference to an action level
 - Is my pest level above or below an established threshold?
 - Do we have action levels for pests in grain and processing facilities?
 - There is zero level for some pests (Is this realistic or can this be measured with some level of certainty?) [Sampling issue]

1. Not correctly identifying the pest

Pest identification

- Helps in knowing more information about its biology, ecology, behavior, and response to pesticides or pesticide alternatives
- Information can be accessed from the web
- Information can be obtained from professionals in the field
- There are people who help in identification of pests (mostly at universities)

2. Not understanding what species are associated with raw and processed grain

Raw grain storage structures

Steel bins

Concrete silos

Poor storage structures-Africa

Kanouri

Massa

Wetter Regions

Gbaya

From: Dr. E. N. Nukenine

Barn, across ethnic groups

Improved crib, many ethnic groups

Duru

Loulis flour mill, Greece

Internal feeders

Rice weevil is predominantly in whole grain

Good, N. E. (1937)

Internal feeders Females lay eggs outside kernels

Moth

Borer

LESSER GRAIN BORER-ADULT ON 2M

Female moth lays egg on grain kernal. The larva emerging from egg gnaws a hole, no larger than a pin prick, through which it enters the kernel. Kernel cut showing entrance channel. Larva feeds and grows, enlarging cavity. The full-grown larva is as long as kernel in which it has eaten out a large cavity. The pupa is the stage between larva and adult moth. **ANGOUMOIS GRAIN MOTH** The moth leaves **DEVELOPMENT IN WHEAT** kernel by round hole shown.

Lesser grain borer is predominantly in whole grain

R. dominica

External feeders

Red and confused flour beetles (*Tribolium* species)

Flour beetles are found in all mill streams

Tribolium by lifestage

Source: N. E. Good (1937)

KSU Mill: Cleaning House Product Samples

Means followed by different letters are significant (P < 0.05; lsmeans test)

KSU Mill: Flour Mill Product Samples

3. Not understanding the importance of sanitation

Insects in Grain Residues at Elevators (Arthur et al. 2006)

Number of live adult insects^a per kg (mean \pm SE) and percentage residue samples infested with pest insects, by inspection location

Location	Sitophilus	Cryptolestes	Tribolium	Typhaea stercorea	Rhyzopertha dominica	Oryzaephilus	Ahasverus advena	Total	% Infested
Boot pit	40.08±7.90a	9.31±2.80ab	10.94±5.73a	0.14±0.06a	0.70±0.35a	1.23±0.56a	0.11±0.08ab	62.54±12.92a	71.1
Dump pit	8.52±1.54b	$6.50 \pm 1.66 \mathrm{bc}$	1.11 ± 0.27 b	$0.43 \pm 0.29a$	0.44±0.19a	$0.14 \pm 0.04b$	$0.02 \pm 0.02 b$	17.16±2.56b	45.3
Headhouse	3.38 <u>+</u> 1.44c	6.88 ± 2.74 bc	1.47 ± 0.48 b	$0.09 \pm 0.04a$	$0.23 \pm 0.08a$	$0.07 \pm 0.04 b$	$0.01 \pm 0.01 \mathrm{b}$	$12.10 \pm 3.48b$	29.7
Rail line	8.16±2.41b	$2.61 \pm 1.42c$	$4.76 \pm 4.30b$	1.17 <u>±</u> 1.07a	$0.14 \pm 0.10a$	1.01±0.95b	0.05 ± 0.04 b	17.89±5.96b	35.4
Tunnel	37.09 <u>+</u> 8.49a	$33.97 \pm 20.94a$	$11.31 \pm 8.20 a$	$0.01\pm0.01a$	$0.80 \pm 0.65 a$	$0.67 \pm 0.54b$	$0.43 \pm 0.27 \mathrm{a}$	$84.28 \pm 25.24a$	53.1

Data from 9 elevators and 1,575 samples. Total number of pest insects found = 46,725.

Impact of Sanitation of Bins (Reed et al. 2003)

	Bins cleaned prior	to filling	Bins not cleaned prior to filling		
Species	Mean number/kg ± standard error	% of population	Mean number/kg ± standard error	% of population	
Cryptolestes spp.	$0.7 \pm 0.31^*$	14.4	2.3 ± 0.49	8.7	
Rhyzopertha dominica	1.1 ± 1.10	22.6	1.33 ± 1.24	5.0	
Oryzaephilus spp.	$0 \pm 0^{**}$	0	0.07 ± 0	0.3	
Sitophilus spp.	2.9 ± 1.44	60.3	13.4 ± 5.61	50.4	
Tribolium spp.	0.1 ± 0.05	2.1	9.5 ± 7.21	35.6	
All pest species	$4.9 \pm 2.01^{**}$		26.6 ± 9.25		
All natural enemies	0.02 ± 0.01		0.4 ± 0.32		

Data from 11 elevators, samples from 25 – 138 bins at each elevator.

Spillage

KSU pilot flour mill data, June 15 – October 12, 2002

No. product samples examined	Percentage of samples with insects	No. samples with insects after 8 weeks
439	53.8	80.1%

Andy Allen and Bh. Subramanyam, 2004. Unpublished data.

Sanitary design aspects

Sanitary Design Aspects

 Eliminate standing water through good design and repair of grounds outside and inside the mill

4. Not having an established threshold for pests and a pest sampling program

Defect action levels

http://www.fda.gov/Food/GuidanceComplianceRegulatoryInformation/GuidanceDocuments/Sanitation/ucm056174.htm

- GIPSA standard for infested grain
 - Wheat, rye, and triticale
 - 2 live insects/kg of grain
 - Barley, canola, corn, oats, sorghum, soybeans, sunflower seeds, mixed seeds
 - 1 live weevil, or other 5 live injurious insects, 10 or more live injurious insects
- At time of sale
 - 32 IDK/100 grams (wheat)
- In processed food
 - 75 insect fragments/50 g of flour (wheat)

Grain bulk

- Probe sampler
- Spear or trier

Vacuum probe for bulk-stored grain

021

Pitfall Cone Trap

- 95 mm x 125 mm coneshaped with holes
- Very sensitive
- For surface area of the grain bulk

Trece.com

Probe traps

370 mm x 27 mm
Funnel and collecting tube
Can be inserted into the grain bulk

Trap retrieval is critical!

Automated counts of insects in grain (OPIsystems.com)

Stormax Insector

5. Not understanding that pests are also present outdoors

Flour Mill 1: Inside and Outside Mill Allen & Subramanyam, 2004; unpubl. data)

IMM=Indianmeal moth, RFB=Red flour beetle, HFB=Hairy fungus beetle, RGB=Rusty/flat grain beetle, FGB=Foreign grain beetle, TRG=Warehouse beetle, CFB=Confused flour beetle, LGB=Lesser grain borer, STGB=Sawtoothed grain beetle, CAD=Cadelle

Insects Outdoors

Trogoderma variabile Warehouse beetle

Plodia interpunctella Indianmeal moth

Average daily capture rate from 6/7/00 to 10/11/00

Source: Jim Campbell (unpublished data)

Pest Entry Points

-No open doors -Screen windows -Seal entry points

A good pest exclusion practice

Another exclusion practice

龖

WE THEN

Tight seals around loading dock doors

-

111

I CHINING I

TI THE MARK

KIT

المستحمد المستعد من المعاد الملك والملك والمعالية المسمول والمراج المراجع المراجع الماري المراجع المراجع

HALIM

UNIVERSAL GX-4000 REPLACEMENT PANEL

Netting to Exclude Birds

Tactile Deterrents for Birds

6. Applying a liquid pesticide to infested grain

Calibration is essential

7. Poor fumigation/pesticide application practices

Fumigation

Gas monitoring and personal protective equipment are essential

8. Not selecting a reliable pest management service provider

Good Service Characteristics

- Professional
 Ethical
 - Neat
 - Clean
 - Client confidentiality

Courtesy: Ole Dosland

Good Service Characteristics

- Reputable
 - Knowledgeable
 - Experienced
 - Honest
 - Listens

Courtesy: Ole Dosland

Good Service Characteristics

- Communication
 Documentation
 - In person

– On phone

Courtesy: Ole Dosland

9. Having a light above the door

Lighting

- Place lights away from buildings
- High pressure sodium lights near buildings
- No lights near doors and windows

Have good lighting everywhere

11

¥

HALF H

10. Poor trash disposal practices

Improper garbage disposal promotes pest activity

Keep dumpster on a concrete pad Weekly garbage disposal

11. Poor inspection practices

Transport vehicles

- Inbound inspection
- Seals in place
- Trailers/cars clean

Warehouse and mill

- Pallets
- Used equipment
- Live plants in offices
- Food prep.; receiving
- Grain products
- Spillage on drums
- Mill for sanitation issues

12. Not monitoring fumigant gas concentrations or pest numbers over time

Traps and Mechanical Devices

A=Wild bird food B=Small animal food C=Cat and dog food D=Food bar table

Indianmeal Moths in a Retail Store

Before sanitation

After sanitation before Tempo

After Tempo

Sequential contour maps

Aluminum Phosphide Different formulations for different uses

- > Tablets
 - > 3 g, releases 1 g of phosphine
- Pellets
 - > 0.6 g, releases 0.2 g of phosphine
- Sachets
 - > 34 g, releases 11 g of phosphine
- Linear gas generation until 80%, then the generation becomes nonlinear
- Gas release differences among formulations
 - Pellets > tablets > sachets

Phosphine Can be Used to Treat Commodities in Various Storage Structures

Choice of formulation and sealing can help hold an effective concentration

CONCENTRATION VS TIME

Whole facility treatments for mills

Methyl bromide

Heat treatment

Sulfuryl fluoride

K-State Flour Mill

Gas Concentration: MB1

Gas Concentration: SF1

Heat treatment: Raising the ambient air temperature to 122-140°F (50-60°C), and maintaining these temperatures for 24-36 hours

Once a Year

Red flour beetle adult and young larval survival as a function of temperature

Aug 31-Sep 2, 2007

Total Number of Male Moths Captured Before and After Heat Treatments (KSU Pilot Flour Mill, June 23-December 23, 1999)

Captures of Red Flour Beetles (*Tribolium castaneum*)

Mean number of adults/trap/week

Date	Press room (<i>n</i> =35)	Flour room (<i>n</i> =10)	Outside (<i>n</i> =5)
5/30/2006	0.46	0.40	0.50
6/14/2006	0.20	0.42	0.65
6/28/2006	0.32	0.65	0
7/11/2006	0 (100%)	0.09 (86%)	0
7/25/2006	0.03	0.10	0.38
8/8/2006	0	0.05	0.50
8/23/2006	0.01	0.05	0.20

13. Not wearing proper protective apparel or clothing

http://pesticidepics.org/

Fumigation

Gas monitoring and personal protective equipment are essential

14. Poor pallet spacing

Improper stocking or storage practices

Give 12 inches of space between the wall and pallets Pallets, 6 inches off the floor

15. Not removing unused equipment or not being clean and organized

> Sort, Set in order, Shine, Standardize, Sustain

Eliminate Flat Surfaces and Remove Unused Equipment

Flat surfaces

Storage of unused equipment

Conclusions

- Know your pests
- Know your facility
- Know how sanitation is related to pest activity
- Inspect and monitor pests
- Pest management service provider is NOT a magician
- Get yourself trained and familiar with sanitation and pest management

Thank you