Heat Treatment for Mills & Storage Structures

Food/Feed Processing Plants, Warehouses & Bins/Silos

IAOM South East Asia Conference & Expo
October 6-8, 2019
Intercontinental Jakarta Pondok Indah Hotel

Dr. Raj Hulasare
Scientist & Product Manager,
Thermal Remediation
Sunbelt Rentals
Burnsville, MN, USA
Structural Fumigation

FUMIGANTS
- Phosphine - Insect resistance, Corrosion
- Methyl Bromide - Ozone depletion
- Sulfuryl Fluoride - Residues? Dosage?

CONTACT INSECTICIDES
- Contact Insecticides - Fogging, Aerosols/ULV - Penetration?
First Use of Heat

257 Years Ago . . .

In 1762 – France: 69°C/ 156°F for 3 d, moth
Heat treatment of Mills

>100 Years Ago . . .

1913 - Kansas, Mid-West USA, Southern Canada
Heat in mills to control insects
100 Years ago.....Manhattan, Kansas

...In Kansas the heating of more than twenty mills has absolutely proven that no stage of insect, even in the most inaccessible places, could withstand the heat.....February, 1913
Heat treatment Concept

Kills **ALL** Stages of Insect Life Cycle

- Adult
- Pupa
- Larva
- Eggs
Heat & Insect Death

- High temperature -
 - Death by Dehydration (low RH)/desiccation
- Above 50 °C / 120 °F
 - Cell membranes “melt”
 - Enzyme destruction
 - Change in salt balance
 - Protein coagulation
Temperature Effects on Insects

Source: P. Fields, AAFC, Canada
Drivers - Heat Treatment (HT)?

HT

Consumer Preference
- Pesticide-free Products

Eco-Friendly Technology
- Montreal Protocol
- US Clean Air Act

Insect Resistance
- Higher dosage, Life stages?

Green IPM
Heat - Advantages

SAFE • EFFECTIVE • CO-FRIENDLY

- Non Chemical
- People-Safe
- Kills all life stages
- No ozone depletion
- No Toxicity or Corrosion issues
- No evacuation of People • No Sealing • Spot Treatments
Efficacy to Control Pests

- MBr – Methyl bromide
- PH$_3$ - Phosphine
- SF (Profume)
- CO$_2$ – Carbon dioxide
- O$_3$ - Ozone

Efficacy – function of temperature
Heat Treatment

Insects – lethal threshold temperatures

HT Process

Ambient temperature

High Temperature
[50 - 60°C / (120 - 140°F)]

Gradual

Low Humidity (≤ 25%)
(Desiccation/Dehydration)
Heat treatment concept: Raising the ambient air temperature of the complete facility, or a part of it, to 122-140°F (50-60°C), and maintaining these temperatures for at least 24 hours or less depending on application.
Positive Pressurization – Forced ambient air (Patented Process)

- Positive pressure
 - Good air distribution
 - Hot air is pushed into corners, cracks and crevices

- Calculated and controlled infiltration - air changes

- Lower relative humidity

US & Canadian Patents
Re-circulating Inside Air

- Negative pressure
- Poor air circulation
- Uncontrolled infiltration
 - No air changes

Low temperature zones (cold spots)
Real-time Wireless Temperature Monitoring

Untreated Area (Office)

Receiver

Heater

Heater

Heater

Treated Area

Temperature transmitters
Start of the Heat Treatment

Fig. 1: Real-time Temperature Profile from Sep 16, 2006, 06:35 AM to 09:05 PM

START

12:30 hr

(27°C)

(38°C)

(40°C)

(60°C)

(50°C)

160
140
120
100
80
60
40
20
0
9/16, 6:14
9/16, 8:38
9/16, 11:02
9/16, 13:26
9/16, 15:50
9/16, 18:14
9/16, 20:38

Tx:49 sensor in office on 5th floor

Fig. 1: Realtime Temperature Profile from Sep 16, 2006, 06:35 AM to 09:05 PM

Tx:49 sensor in office on 3rd floor

Temperature (°F)
End of the Heat Treatment

Fig. 2: Real-time Temperature Profile

Temperature (°F)

(60°C)

(49°C)

(38°C)

(27°C)

Tx:49 sensor in office on 5th floor

END
Effective Heat Treatment

Monitor Temperatures throughout heated area

Manage airflow for Uniform Temperature Profile

Real-time Wireless Temperature Monitoring System

HOT Pockets

Damage Potential

Insect Survival

Real-time adjustment

Documentation for QC

Worker Safety & Savings
Steps in Heat Treatment

Visit & Feasibility

Engineering, Equipment & Estimate

Setup, HT, Document & Review

Equipment mobilization
Heat Treatment Checklist

- **Before**: cleaning, drive belts, product removal, sprinkler heads, sensitive eqpmt etc.
- **During**: Intrusive, temperature points/frequency, fans and/or duct movement for airflow and heat distribution
- **After**: cool down, insect bioassays, inspection etc.
Sanitation is the key

Important as heat does not penetrate products well.
Apply a residual pesticide such as cyfluthrin (Tempo) or diatomaceous earth
Exponential Growth of Insect Populations
Heat versus Fumigants
<table>
<thead>
<tr>
<th>Insect stage</th>
<th>Sanitation level</th>
<th>Treatment</th>
<th>% Mean (SE) mortalitya</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults</td>
<td>2 cm</td>
<td>MB</td>
<td>100a</td>
<td>69.90</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SF</td>
<td>100a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat</td>
<td>90.1 (1.2)b</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SF</td>
<td>98.7 (1.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MB</td>
<td>98.7 (1.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat</td>
<td>98.7 (1.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pupae</td>
<td>2 cm</td>
<td>MB</td>
<td>100</td>
<td>2.56</td>
<td>0.1568</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SF</td>
<td>95.4 (2.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat</td>
<td>97.3 (2.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MB</td>
<td>98.7 (1.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SF</td>
<td>98.7 (1.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat</td>
<td>98.7 (1.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large larvae</td>
<td>2 cm</td>
<td>MB</td>
<td>99.8 (0.1)a</td>
<td>8.62</td>
<td>0.0172</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SF</td>
<td>100 (0.0)a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat</td>
<td>96.1 (1.3)b</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MB</td>
<td>99.9 (0.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SF</td>
<td>98.2 (1.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat</td>
<td>98.2 (1.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small larvae</td>
<td>2 cm</td>
<td>MB</td>
<td>100a</td>
<td>5.39</td>
<td>0.0457</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SF</td>
<td>100a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat</td>
<td>93.5 (2.8)b</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MB</td>
<td>99.9 (0.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SF</td>
<td>99.3 (0.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs</td>
<td>2 cm</td>
<td>MB</td>
<td>99.9 (0.1)</td>
<td>1.02</td>
<td>0.4145</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SF</td>
<td>92.3 (7.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat</td>
<td>99.3 (0.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MB</td>
<td>99.9 (0.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SF</td>
<td>88.7 (10.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat</td>
<td>99.8 (0.1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

K-State Study (2009-2010)

$n = 3/\text{trt}$

Trt time=24 h for all
Heat Treatment of Bins & Silos

Proactive - Preventative

&

Reactive - Response
Bins & Silos

► Pre-loading or Pre-harvest HT
 • On-farm bins
 • Elevators storages
 • Processing facilities
 • Organic processing plants

► Bin/Silo types
 • Concrete
 • Metal
 • GI bins
 • Tanks
HT of bins and silos

Hopper bottom

Flat bottom
Advantages of HT of Bins/Silos

- Shorter treatment times (4 to 12 hours)
- Bins/Silos in facilities
 - Treated in rotation without shut-down
- No retrofitting – existing transition, bin-entry
- On farm or warehouses – no extensive sealing or evacuation
Heater Placement on multiple floors

Heater Placement under rolling shutter
Heater Placement & Layout

Heater Partially inside Packaging Plant

Duct & Fan Layout - Packaging
Wireless Temperature Sensors Placed Inside Sensitive Equipment
Detecting hidden infestations

Overhead electrical junction box

10,000s of adults, larvae, pupae!!
Partial/Spot heat treatment Mill extension in a warehouse

A temporary Plastic Sheet OR Fumigation cover – No Sealing

Philippines – July 2018
Partial/Spot heat treatment in a warehouse

Wheat Pollard Area in warehouse

Packaging Area in warehouse
Sprinkler heads and opening the machines
Temperature Profile, Beetles, & Rats!!!!
Flour Mill, Celaya, Mexico

High temperature duct through the ‘well’ of Stairwell to six floors of the mill
Flour Mills in Philippines

Dead beetles, cockroaches
Heat Treatment - Durum Mill, Canada (Sept 22-23, 2018)

Sifters with screens removed
Concrete floor
Concrete floor & wall

Hole in the duct
Conclusions

- Heat kills all life stages of insects
- **Good method to locate insect problems in industrial plants**
- Repeat customers = efficacy of heat
- Viable alternative to methyl bromide
- Economies of scale - will make it more affordable
Spread of Heat Treatment

- **North America**
 - USA, Canada and Mexico

- **Europe**
 - Greece, Romania

- **Asia**
 - India, Philippines
THERMAL REMEDIATION
Industrial Applications

- Food Processing
- Rice Mills
- Flour Mills
- Pet Food
- Corn Mills
- Cereal Processing
- Bakeries
- Warehouses

- Baby Food Plants
- Wood Packaging
- Tobacco Companies

Organic processing plants/storages
Entire structure or spot treatment
Heat Treatment: Patented Scientific Process

It’s more of an Art – **HOW** you apply it