Understanding NEC and NEMA for Locations with Combustible Dust

Knobelsdorff Electric

Dust Explosion

Scope and Purpose

Understand the Unique Hazards in our Industry

NEC Hazardous Location Classifications

Ignition Sources

NEMA Enclosure Types and Examples

Scope and Purpose

National Fire Protection Association

Planning and Design to Reduce Risks

Explosion Suppression

Electrical Hazards Facing all Facilities

Industrial Solvent

Made from combining Propane and Nitric Acid

Used in Dry Cleaning

Safety in Motorsports

Hazards are known

Safety is Priority

Rules keep People Safe

Hazards in the Grain Industry

OXYGEN

IGNITION

FUEL

IGNITION

DISPERSION

OXYGEN

CONFINEMENT

FUEL

Enclosed Building

Grain Dust

Spark or Heat

NFPA 70: National Electrical Code (NEC)

Chapter 5 Special Occupancies

Class: The type of material or substance presenting a hazard

Class I – Gas or Vapors Class II – Dust or Particles Class III – Lint or Fibers

Divisions: **Probability of a hazardous material being present**

Division 1 - During Normal Operating Conditions Division 2 - Not Likely in Normal Operating Conditions

Class I Division 1:

Gases exist under normal conditions

Gases exist due to faulty operations

Class I Division 2:

Gases or Liquids can only be released by rupture or breakdown Failure of ventilation equipment

Class II Division 1: High concentrations of dust are present during normal conditions (explosive levels)

Class II Division 2: Normal conditions do not present high levels of combustible dust

Class III Division 1: Locations where easily ignited fibers are used or manufactured

Class III Division 2: Locations where easily ignited fibers are stored or handled

Groups:

Define the type of hazardous material in the area

Groups A – D: Various Gasses & Vapors **Group E: Metals (exotic / fine particles) Group F: Carbon Black / Coal Dust Group G: Grains / Starch / Flour / Wood**

Classification Zones: Based on Hours Per Year

Material Concentration Required for Explosion

Saw Dust - 40 g/m3 Corn Dust – 60 g/m3 Wheat / Starch – 30 g/m3 Sugar Dust – 200 g/m3

Explosive Grain Dust

Common Locations

Receiving

Batching Scales/Mixers

Bindecks

Loadout

Explosive Grain Dust

Housekeeping Have Plan in Place Secondary Explosions

Thickness of Dust Layer

1/8" or more of dust and you have a serious hazard for secondary expolosion

Motors Totally Enclosed, Fan-Cooled (TEFC) Explosion Proof (EXP)

Control Devices Position Switches Solenoids Temperature Transmitters

Light fixtures & Power Area Lighting Emergency Lighting Receptacles

Powered Industrial Equipment

Hazard Monitoring (HazMon) Bearings Rub Blocks Speed Sensors

Explosion Proof Devices

Contains the Explosion

Listed for the Hazardous Area

Engaged Threads

National Electrical Manufacturers Association (NEMA)

Type 1: Indoor use Type 3: Outdoor use (Water Tight, Dust Tight) Type 4/4X: Indoor or Outdoor Use (Dust Tight) Type 7: Indoor use (explosion-proof) Class 1 and 2 Type 9: Indoor use (dust-ignition proof) Class 2

Type 1: Indoor use

Non Hazardous Locations

NEMA Ratings

Type 3: Outdoor Use

"Dust Tight"

3R - "Weather Tight"

Type 4/4X: Indoor or outdoor use

"Dust Tight" **Class 2 Division 2**

NEMA Ratings

Type 7: Explosion-proof

Contains the Explosion

Class 1, Division 1 & 2

NEMA Ratings

Type 9: Dust-ignition proof

Not as Common

Class 2, Division 1 & 2

NEMA 3

GFCI where required

NEMA Ratings

NEMA 3

Gasketed

Designed to keep out water and dust

NEMA 3

Faulty Cover: Spring Malfunction

NEMA 3 Outdoor NEMA 4 Dust Tight Look for sticker inside

NEMA Ratings

NEMA 4 "Dust Tight" Junction Box

NEMA 7 "Explosion Proof" Light Fixture"

Provisions in NEC that allow the mixing of NEMA 3, 4, 7, & 9 equipment

NEC – Chapter 5 Boxes containing taps, joints, or terminal connections, in addition to being dust tight, must be provided with threaded hubs and must be identified for use in Class II locations

TB Type

- Suitable for wet locations when used with gasketed covers.
- Federal Specification W-C-586D/A-A 50563.
- Suitable for use in hazardous location applications when installed according to NEC Articles 501.10(b), Class I, Div. 2, (Suitable for use in Class I Zone 2 applications) 502.10 and 503.10.

Listed File No. E3397

Certified File No. LR11852

Mixing of NEMA 3, 4, 7, & 9 enclosures

Know the location

Look for Motor Plate Info

Dual Listed Motor

Temperature Code

T3B: Max Temp = 329 degrees F

Know the Motor Plates

Different designs for each manufacturer

OSION	PREMIUM E 3-PHASE INDU	FFICIENCY EQPIL
	MODEL NO.	UETAXIEI
	TYPE	VOLTS SEAT (HE 20) HE 20
	FORM	
	DUTY COL	SER NO. LECECCHE
G 1.15	MAX AMB. 40 °C NOM. EFF. 93.0 MIN. EFF. 92.4	BRG. L.S. CO 2000 NO. 0.S.CO 2000 P.F. 50.0
	TEMPERATURE CONVERTION OP1	
	TYPE WTOOK	FOR CL 1 GR & GR E FAG
	HOUSTON, T	EXAS-MADE IN U.S.A.

Not Dual Listed on motor tag

Class 1, Division 2 Class 1, Zone 2

TEFC Need to Look Deeper

More Motor Plate Info

Document while clean

NEMA 7 "Explosion Proof"

Class 2 Division 1

Covers installed

Ventilation

NEMA 9 "Dust Ignition Proof"

2-stage Receptacle

NEMA 9 "Dust Ignition Proof"

Spring Cover

NEMA 9 "Dust Ignition Proof"

Start/Stop Switch

Design with Safety in Mind

Reduce Risk During Design Phase **Classify Hazardous Locations** Lowering Risk and Cost

NFPA

Standard for the Prevention of Fires and Dust Explosions in Agricultural and Food **Processing Facilities**

2017

Hazard Management: Mitigation & Analysis

 Facilities/Structures Conveying Equipment Process Equipment Dust System Equipment Ventilation & Isolation

NFPA

Standard for the Prevention of Fires and Dust Explosions in Agricultural and Food **Processing Facilities**

2017

Management Systems

 Procedures and Practices Inspection, Testing & Maintenance Training & Hazard awareness

Standard on the Fundamentals of **Combustible Dust**

2019

PPE

- Hazard Identification & Design Options Hazard Management: Mitigation & Prevention Housekeeping Methodology & Procedures **Ignition Source Control**
- **Explosion Segregation and Suppression Example Dust Hazard Analysis**

NFPA

Standard for the Prevention of Fire and Dust Explosions from the Manufacturing, Processing, and Handling of Combustible **Particulate Solids**

2017

• Storage

- Facility/System Design **Dust Handling Area Segregation**
- Equipment Explosion Assessment
- Material transfer Systems
- Dust Collection/Vacuumed Systems **Cleaning Methods**
- Ignition Sources and Fire Protection

Dust Revie expl Priori

Dust Hazard Analysis (DHA)

Review of a facility for potential fire or explosion hazards

Prioritize and generate plans to manage risk

Building Design

Concrete Mills

Minimize dust ledges Electrical conduit can be cast into the wall

Steel tubes minimize ledges on floor steel Conduit can be imbedded into the floor

Building Design

Steel Mills

Interior liner panels conceal girts

Tube steel and solid floors Checkered plate helps segregate dirty areas

Building Design

Venting

Pressure Relief Venting Legs Filters

Hazardous Areas "H" occupancy Pressure relief panels Louvers

Building Design

THE BACKUP PLAN:

Flame-arresting and particulate retention vent system

Explosion Suppression System

Electrical Hazards

Design Out the Hazards

Goal is to Not wear PPE

Keep employees out of harms way

Electrical Hazards

30,000 Arc Flash Incidents Per Year7,000 Burn Injuries

- 2,000 Hospitalizations
- 400 Fatalities

80% of fatalities due to burns, not electrical shock

81 Electrocutions in 2015
40% at 250 volts or less

Electrical Hazards

Smart MCCS

HMI/SCADA for troubleshooting

Conclusion - Review

Hazardous Locations

Class 2, Division 1 and 2

Ignition Sources

NEMA Types and Ratings

Questions

Karl von Knobelsdorff CEO - Knobelsdorff Electric karl@knobelsdorffelectric.com

