

ELEVATOR TROUBLESHOOTING

Causes, Effects, Solutions

Three Categories

- Discharge
 - Down-legging
 - Back-legging
- •Premature Bucket Failure
 - Wear
 - Cracking

- Bucket Filling
 - -Uneven Fill
 - -Incomplete Fill

Discharge Back-legging

• Back-legging describes elevated material falling down the up leg.

- Causes
 - Speed too fast
 - Buckets worn
 - Obstruction in head or throat
 - Pressure vent or internal structure

Typical throw Pattern for High Speed Grain Leg

WWW.MAXILIFT.COM: YOUR SOURCE FOR BUCKETS & ACCESSORIES

Shroud in Head

Helps control
material flow and
reduce discharge
problems

KETS & ACCESSORIES

Discharge Down-legging

- Down-legging describes elevated material falling down the down leg.
 - Causes
 - Speed too fast/slow
 - Wiper damaged or missing
 - Throat position too high
 - Buckets un-vented
 - Obstruction in Throat
 - High moisture/Sticky Material
 - Air Pressure in Leg

Bucket Discharge

- The point at which material starts to exit the bucket is determined by belt speed, and commodity being conveyed.
- A high speed elevator will begin to discharge at about 30-40 degrees before top dead center
- Complete discharge should occur at approximately 100 degrees below top dead center.

Discharge Position

- As speeds and capacities have gone up, throat position has gone down
- Most manufacturers have a minimum position of 45° below centerline of head shaft

Bucket Discharge

- In theory, capacity can be gained by increasing belt speed.
- Practical application can be tricky

Speed Increase Effects

- Earlier Discharge
- Higher throw trajectory
- Increased air volume
- Reduction of time window
- Increase in commodity damage

Bucket Fill Problems

-Causes

- Misguided inlet
- Buckets un-vented
- Pulley/inlet position not optimal
- Speed too fast
- Vertical spacing

- Inlet undersized
- Buckets worn
- Air Pressure in Leg
- Obstruction

Upside
Feed
Optimal
Pulley
Position

To Vent or Not to Vent

- Conveying meals or soft stock materials
- Sticky or high fat content
- Any light test weight materials
- Powders or flours
- WHEN IN DOUBT, VENT YOUR BUCKETS!

Bucket Venting

Aids in fill and discharge of light fluffy, or poor flowing materials. Service provided at a nominal charge.

Standard Vent

#2 Vent

#3 Vent

#4 Vent

Same holes in body as mounting holes

Twice as many holes in body as mounting holes

Four times as many holes as mounting holes

Same as #3
Plus three
holes in each
end

PREMATURE BUCKET FAILURE

- Causes
 - Improper hardware selection
 - Over-torqued hardware
 - Incorrect bucket or belt size
 - Misaligned belt
 - Excessive digging
 - Poor inspection practices

- Solutions
 - Must install a locking device
 - Use proper torque settings
 - Ensure buckets and belting are proper widths
 - Install digger buckets
 - Regular inspections to replace damaged buckets

Excessive Bucket Wear

- Misguided or poor feeding
 - Buckets must dig to fill
 - Material overloading one side causing misalignment
- Improper bucket Material
- Application tends to cake or build up in trunking
- Severe downlegging causing heavy digging

Bucket with holes in belly

WWW.MAXILIFT.COM: YOUR SOURCE FOR BUCKETS & ACCESSORIES

Urethane
buckets in
mash leg at
Prestage
Farms.

Cracked Bolt Holes - Cause

BUCKET MATERIALS

Prime Virgin Polyethylene

For Grain and Food **Products**

-120F to +180F (210F Intermittent)

FDA Food Grade Material

Zytel Nylon

Hot, High Impact, Abrasive products

-60F to +300F (350 **Intermittent)**

Food Grade Available on Request

Urethane – 55 **Durometer**

Heavy Abrasion or **Sticky Materials**

-60F to +180F (210F) **Intermittent)**

FDA Food Grade Material

<u>Maxi-lift Inc.</u>

Polyethylene Vs Urethane

- Turkey feed mash leg
- 354,000 tons throughput
- Poly samples lost +1" off lip
- Capacity loss 50%
- Urethane showed no appreciable wear

The Cost of Bucket Wear

- 10x6 poly bucket
- Water level new = 194.04 cubic inches
- =164.15 cubic inches
- •Loss of 15.4% capacity

- 14x7 poly bucket
- Water level new = 356.4 cubic inches
- 1" wear on front lip 1" wear on front lip = 265.35 cubic inches

•Loss of 25.5% capacit

Questions?